Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 15(2): 818-833, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38404317

RESUMEN

The post-ischemic no-reflow phenomenon after primary percutaneous coronary intervention (PCI) is observed in more than half of subjects and is defined as the absence or marked slowing of distal coronary blood flow despite removal of the arterial occlusion. To visualize no-reflow in experimental studies, the fluorescent dye thioflavin S (ThS) is often used, which allows for the estimation of the size of microvascular obstruction by staining the endothelial lining of vessels. Based on the ability of indocyanine green (ICG) to be retained in tissues with increased vascular permeability, we proposed the possibility of using it to assess not only the severity of microvascular obstruction but also the degree of vascular permeability in the zone of myocardial infarction. The aim of our study was to investigate the possibility of using ICG to visualize no-reflow zones after ischemia-reperfusion injury of rat myocardium. Using dual ICG and ThS staining and the FLUM multispectral fluorescence organoscope, we recorded ICG and ThS fluorescence within the zone of myocardial necrosis, identifying ICG-negative zones whose size correlated with the size of the no-reflow zones detected by ThS. It is also shown that the contrast change between the no-reflow zone and nonischemic myocardium reflects the severity of blood stasis, indicating that ICG-negative zones are no-reflow zones. The described method can be an addition or alternative to the traditional method of measuring the size of no-reflow zones in the experiment.

2.
Viruses ; 15(5)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37243200

RESUMEN

Influenza virus can infect the vascular endothelium and cause endothelial dysfunction. Persons at higher risk for severe influenza are patients with acute and chronic cardiovascular disorders; however, the mechanism of influenza-induced cardiovascular system alteration remains not fully understood. The aim of the study was to assess the functional activity of mesenteric blood vessels of Wistar rats with premorbid acute cardiomyopathy infected with Influenza A(H1N1)pdm09 virus. For this, we determined (1) the vasomotor activity of mesenteric blood vessels of Wistar rats using wire myography, (2) the level of expression of three endothelial factors: endothelial nitric oxide synthase (eNOS), plasminogen activator inhibitor-1 (PAI-1), and tissue plasminogen activator (tPA) in the endothelium of mesenteric blood vessels using immunohistochemistry, and (3) the concentration of PAI-1 and tPA in the blood plasma using ELISA. Acute cardiomyopathy in animals was induced by doxorubicin (DOX) following infection with rat-adapted Influenza A(H1N1)pdm09 virus. The functional activity of mesenteric blood vessels was analyzed at 24 and 96 h post infection (hpi). Thus, the maximal response of mesenteric arteries to both vasoconstrictor and vasodilator at 24 and 96 hpi was significantly decreased compared with control. Expression of eNOS in the mesenteric vascular endothelium was modulated at 24 and 96 hpi. PAI-1 expression increased 3.47-fold at 96 hpi, while the concentration of PAI-1 in the blood plasma increased 6.43-fold at 24 hpi compared with control. The tPA concentration in plasma was also modulated at 24 hpi and 96 hpi. The obtained data indicate that influenza A(H1N1)pdm09 virus aggravates the course of premorbid acute cardiomyopathy in Wistar rats, causing pronounced dysregulation of endothelial factor expression and vasomotor activity impairment of mesenteric arteries.


Asunto(s)
Cardiomiopatías , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Ratas , Animales , Humanos , Ratas Wistar , Activador de Tejido Plasminógeno , Inhibidor 1 de Activador Plasminogénico
3.
Int J Biol Macromol ; 229: 329-343, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36592852

RESUMEN

Polymeric nanocomposite materials have great potential in the development of tissue-engineered scaffolds because they affect the structure and properties of polymeric materials and regulate cell proliferation and differentiation. In this work, cerium oxide nanoparticles (CeONPs) were incorporated into a chitosan (CS) film to improve the proliferation of multipotent mesenchymal stem cells (MSCs). The citrate-stabilized CeONPs with a negative ζ-potential (-25.0 mV) were precoated with CS to obtain positively charged particles (+20.3 mV) and to prevent their aggregation in the composite solution. The composite CS-CeONP films were prepared in the salt and basic forms using a dry-cast process. The films obtained in both forms were characterized by a uniform distribution of CeONPs. The incorporation of CeONPs into the salt form of CS increased the stiffness of the CS-CeONP film, while the subsequent conversion of the film to the basic form resulted in a decrease in both the Young's modulus and the yield stress. The redox activity (Ce4+ ⇌ Ce3+) of cerium oxide in the CS-CeONP film was confirmed by thermal oxidative degradation. In vitro culture of MSCs showed that the CS-CeONP film has good biocompatibility, and in vivo experiments demonstrated its substantial regenerative potential.


Asunto(s)
Cerio , Quitosano , Nanopartículas , Quitosano/química , Nanopartículas/química , Andamios del Tejido/química , Cerio/farmacología , Cerio/química
4.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361882

RESUMEN

Doxorubicin, which is widely used to treat a broad spectrum of malignancies, has pronounced dose-dependent side effects leading to chronic heart failure development. Nicotinamide riboside (NR) is one of the promising candidates for leveling the cardiotoxic effect. In the present work, we performed a comparative study of the cardioprotective and therapeutic actions of various intravenous NR administration modes in chronic doxorubicin-induced cardiomyopathy in Wistar rats. The study used 60 mature male SPF Wistar rats. The animals were randomized into four groups (a control group and three experimental groups) which determined the doxorubicin (intraperitoneally) and NR (intravenous) doses as well as the specific modes of NR administration (combined, preventive). We demonstrated the protective effect of NR on the cardiovascular system both with combined and preventive intravenous drug administration, which was reflected in a fibrous tissue formation decrease, reduced fractional-shortening decrease, and better antioxidant system performance. At the same time, it is important to note that the preventive administration of NR had a more significant protective effect on the animal organism as a whole. This was confirmed by better physical activity parameters and vascular bed conditions. Thus, the data obtained during the study can be used for further investigation into chronic doxorubicin-induced cardiomyopathy prevention and treatment approaches.


Asunto(s)
Cardiomiopatías , Niacinamida , Ratas , Animales , Masculino , Ratas Wistar , Niacinamida/farmacología , Niacinamida/uso terapéutico , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/uso terapéutico , Doxorrubicina/efectos adversos , Cardiomiopatías/inducido químicamente , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/prevención & control , NAD
5.
Sci Rep ; 11(1): 23888, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903800

RESUMEN

Bariatric surgery (BS) improves outcomes in patients with myocardial infarction (MI). Here we tested the hypothesis that BS-mediated reduction in fatal MI could be attributed to its infarct-limiting effect. Wistar rats were randomized into five groups: control (CON), sham (SHAM), Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG), and ileotransposition (IT). Ten weeks later, animals were subjected to 30-min myocardial ischemia plus 120-min reperfusion. Infarct size (IS) and no-reflow area were determined histochemically. Fasting plasma levels of glucagon-like peptide-1 (GLP-1), leptin, ghrelin, and insulin were measured using ELISA. Compared with SHAM, RYGB and SG reduced IS by 22% (p = 0.011) and 10% (p = 0.027), and no-reflow by 38% (p = 0.01) and 32% (p = 0.004), respectively. IT failed to reduce IS and no-reflow. GLP-1 level was increased in the SG and RYGB groups compared with CON. In both the SG and RYGB, leptin level was decreased compared with CON and SHAM. In the SG group, ghrelin level was lower than that in the CON and SHAM. Insulin levels were not different between groups. In conclusion, RYGB and SG increased myocardial tolerance to ischemia-reperfusion injury of non-obese, non-diabetic rats, and their infarct-limiting effect is associated with decreased leptin and ghrelin levels and increased GLP-1 level.


Asunto(s)
Gastrectomía/métodos , Derivación Gástrica/métodos , Derivación Yeyunoileal/métodos , Daño por Reperfusión Miocárdica/prevención & control , Procedimientos Quirúrgicos Profilácticos/métodos , Animales , Íleon/cirugía , Masculino , Ratas , Ratas Wistar
6.
Life Sci ; 279: 119676, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34087285

RESUMEN

AIMS: The effects of three types of bariatric interventions on myocardial infarct size were tested in the rat model of type 2 diabetes mellitus (T2DM). We also evaluated the effects of bariatric surgery on no-reflow phenomenon and vascular dysfunction caused by T2DM. MAIN METHODS: Rats with T2DM were assigned into groups: without surgery, sham-operated, ileal transposition, Roux-en-Y gastric bypass, and sleeve gastrectomy. Oral glucose tolerance, glucagon-like peptide-1, and insulin levels were measured. Six weeks after surgery, the animals were subjected to myocardial ischemia-reperfusion followed by histochemical determination of infarct size (IS), no-reflow zone, and blood stasis area size. Vascular dysfunction was characterized using wire myography. KEY FINDINGS: All bariatric surgery types caused significant reductions in animal body weight and resulted in T2DM compensation. All bariatric interventions partially normalized glucagon-like peptide-1 responses attenuated by T2DM. IS was significantly smaller in animals with T2DM. Bariatric surgery provided no additional IS limitation compared with T2DM alone. Bariatric surgeries reversed T2DM-induced enhanced contractile responses of the mesenteric artery to 5-hydroxytryptamine. Sleeve gastrectomy normalized decreased nitric oxide synthase contribution to the endothelium-dependent vasodilatation in T2DM. SIGNIFICANCE: T2DM resulted in a reduction of infarct size and no-reflow zone size. Bariatric surgery provided no additional infarct-limiting effect, but it normalized T2DM-induced augmented vascular contractility and reversed decreased contribution of nitric oxide to endothelium-dependent vasodilatation typical of T2DM. All taken together, we suggest that this type of surgery may have a beneficial effect on T2DM-induced cardiovascular diseases.


Asunto(s)
Cirugía Bariátrica/métodos , Diabetes Mellitus Experimental/cirugía , Diabetes Mellitus Tipo 2/cirugía , Angiopatías Diabéticas/prevención & control , Derivación Gástrica/métodos , Infarto del Miocardio/prevención & control , Animales , Glucemia/análisis , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/patología , Péptido 1 Similar al Glucagón/análisis , Masculino , Infarto del Miocardio/etiología , Infarto del Miocardio/patología , Ratas , Ratas Wistar
7.
Nanomaterials (Basel) ; 10(4)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340313

RESUMEN

: The effect of unmodified chitosan nanoparticles with a size of ~100 nm and a weakly positive charge on blood coagulation, metabolic activity of cultured cardiomyocytes, general toxicity, biodistribution, and reactive changes in rat organs in response to their single intravenous administration at doses of 1, 2, and 4 mg/kg was studied. Chitosan nanoparticles (CNPs) have a small cytotoxic effect and have a weak antiplatelet and anticoagulant effect. Intravenous administration of CNPs does not cause significant hemodynamic changes, and 30 min after the CNPs administration, they mainly accumulate in the liver and lungs, without causing hemolysis and leukocytosis. The toxicity of chitosan nanoparticles was manifested in a dose-dependent short-term delay in weight gain with subsequent recovery, while in the 2-week observation period no signs of pain and distress were observed in rats. Granulomas found in the lungs and liver indicate slow biodegradation of chitosan nanoparticles. In general, the obtained results indicate a good tolerance of intravenous administration of an unmodified chitosan suspension in the studied dose range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...