Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Allergol Int ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38594175

RESUMEN

Eosinophilic inflammation is primarily characterized by type 2 immune responses against parasitic organisms. In the contemporary human being especially in developed countries, eosinophilic inflammation is strongly associated with allergic/sterile inflammation, and constitutes an undesired immune reaction. This situation is in stark contrast to neutrophilic inflammation, which is indispensable for the host defense against bacterial infections. Among eosinophilic inflammatory disorders, massive accumulation of eosinophils within mucus is observed in certain cases, and is often linked to the distinctive clinical finding of mucus with high viscosity. Eosinophilic mucus is found in a variety of diseases, including chronic allergic keratoconjunctivitis, chronic rhinosinusitis encompassing allergic fungal sinusitis, eosinophilic otitis media, eosinophilic sialodochitis, allergic bronchopulmonary aspergillosis/mycosis, eosinophilic plastic bronchitis, and eosinophilic asthma. In these pathological conditions, chronic inflammation and tissue remodeling coupled with irreversible organ damage due to persistent adhesion of toxic substances and luminal obstruction may impose a significant burden on the body. Eosinophils aggregate in the hyperconcentrated mucus together with cell-derived crystals, macromolecules, and polymers, thereby affecting the biophysical properties of the mucus. This review focuses on the clinically significant challenges of mucus and discusses the consequences of activated eosinophils on the mucosal surface that impact mucus and persistent inflammation.

4.
Allergol Int ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38485545

RESUMEN

Airway mucus is a hydrogel with unique biophysical properties due to its primary water composition and a small proportion of large anionic glycoproteins or mucins. The predominant mucins in human mucus, MUC5AC and MUC5B, are secreted by specialized cells within the airway epithelium both in normal conditions and in response to various stimuli. Their relative proportions are correlated with specific inflammatory responses and disease mechanisms. The dysregulation of mucin expression is implicated in numerous respiratory diseases, including asthma, COPD, and cystic fibrosis, where the pathogenic role of mucus has been extensively described yet often overlooked. In airway diseases, excessive mucus production or impaired mucus clearance leads to mucus plugging, with secondary airway occlusion that contribute to airflow obstruction, asthma severity and poor control. Eosinophils and Charcot Leyden crystals in sputum contribute to the mucus burden and tenacity. Mucin may also contribute to eosinophil survival. Other mechanisms, including eosinophil-independent IL-13 release, mast-cell activation and non-type-2 (T2) cytokines, are also likely to participate in mucus pathobiology. An accurate assessment of mucus and its clinical and functional consequences require a thorough approach that includes evaluation of cellular predominance in sputum, airway cytokines and other inflammatory markers, mucus characteristics and composition and structural and functional impact measured by advanced lung imaging. This review, illustrated with clinical scenarios, provides an overview of current methods to assess mucus and its relevance to the choice of biologics to treat patients with severe asthma.

8.
Allergy ; 78(12): 3077-3102, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37702095

RESUMEN

Over the past years, eosinophils have become a focus of scientific interest, especially in the context of their recently uncovered functions (e.g. antiviral, anti-inflammatory, regulatory). These versatile cells display both beneficial and detrimental activities under various physiological and pathological conditions. Eosinophils are involved in the pathogenesis of many diseases which can be classified into primary (clonal) and secondary (reactive) disorders and idiopathic (hyper)eosinophilic syndromes. Depending on the biological specimen, the eosinophil count in different body compartments may serve as a biomarker reflecting the underlying pathophysiology and/or activity of distinct diseases and as a therapy-driving (predictive) and monitoring tool. Personalized selection of an appropriate therapeutic strategy directly or indirectly targeting the increased number and/or activity of eosinophils should be based on the understanding of eosinophil homeostasis including their interactions with other immune and non-immune cells within different body compartments. Hence, restoring as well as maintaining homeostasis within an individual's eosinophil pool is a goal of both specific and non-specific eosinophil-targeting therapies. Despite the overall favourable safety profile of the currently available anti-eosinophil biologics, the effect of eosinophil depletion should be monitored from the perspective of possible unwanted consequences.


Asunto(s)
Eosinófilos , Humanos , Biomarcadores
10.
Angew Chem Int Ed Engl ; 62(38): e202307451, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37477970

RESUMEN

The first protein-binding allosteric RNA-cleaving DNAzyme (RCD) obtained by direct in vitro selection against eosinophil peroxidase (EPX), a validated marker for airway eosinophilia, is described. The RCD has nanomolar affinity for EPX, shows high selectivity against related peroxidases and other eosinophil proteins, and is resistant to degradation by mammalian nucleases. An optimized RCD was used to develop both fluorescence and lateral flow assays, which were evaluated using 38 minimally processed patient sputum samples (23 non-eosinophilic, 15 eosinophilic), producing a clinical sensitivity of 100 % and specificity of 96 %. This RCD-based lateral flow assay should allow for rapid evaluation of airway eosinophilia as an aid for guiding asthma therapy.


Asunto(s)
ADN Catalítico , Peroxidasa del Eosinófilo , Eosinofilia , Esputo , Animales , Humanos , ADN Catalítico/metabolismo , Peroxidasa del Eosinófilo/metabolismo , Eosinofilia/diagnóstico , Eosinófilos/enzimología , Esputo/química , Esputo/citología
12.
Am J Respir Crit Care Med ; 207(4): 427-437, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36287613

RESUMEN

Rationale: Localized autoimmune responses have been reported in patients with severe eosinophilic asthma, characterized by eosinophil degranulation and airway infections. Objective: To determine the presence of autoantibodies against macrophage scavenger receptors within the airways and their effects on macrophage function and susceptibility to infection. Methods: Anti-EPX (eosinophil peroxidase), anti-MARCO (macrophage receptor with collagenous structure) IgG titers, and T1 and T2 (type 1/2) cytokines were measured in 221 sputa from 143 well-characterized patients with severe asthma. Peripheral monocytes and MDMs (monocyte-derived macrophages) isolated from healthy control subjects were treated with immunoprecipitated immunoglobulins from sputa with high anti-MARCO titers or nonspecific IgG to assess uptake of Streptococcus pneumoniae or response to the bacterial product LPS. Measurements and Main Results: Anti-MARCO IgG was detected in 36% of patients, with significantly higher titers (up to 1:16) in patients with mixed granulocytic sputa, indicative of airway infections. Multivariate regression analysis confirmed increased frequency of degranulation (free eosinophil granules), increased blood eosinophils (indicative of high T2 burden), increased sputum total cell count, peripheral blood leukocytes (indicative of infection), and lymphopenia were associated with increased anti-MARCO IgG titers; IL-15 (odds ratio [OR], 1.79; confidence interval [CI], 1.19-2.70), IL-13 (OR, 1.06; CI, 1.02-1.12), and IL-12p70 (OR, 3.34; CI, 1.32-8.40) were the associated cytokines. Patients with anti-MARCO antibodies had higher chances of subsequent infective versus eosinophilic exacerbations (P = 0.01). MDMs treated with immunoprecipitated immunoglobulins (anti-MARCO+ sputa) had reduced bacterial uptake by 39% ± 15% and significantly reduced release of IL-10 and granulocyte-macrophage colony-stimulating factor (GM-CSF) (P < 0.05) in response to an LPS stimulus. Conclusions: Autoantibodies against macrophage scavenger receptors in eosinophilic asthma airways may impede effective host defenses and lead to recurrent infective bronchitis.


Asunto(s)
Asma , Bronquitis , Eosinofilia Pulmonar , Humanos , Autoanticuerpos , Lipopolisacáridos , Eosinófilos , Citocinas , Macrófagos , Inmunoglobulina G
14.
Eur Respir J ; 61(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36137590

RESUMEN

BACKGROUND: Autoimmunity has been reported in patients with severe coronavirus disease 2019 (COVID-19). We investigated whether anti-nuclear/extractable-nuclear antibodies (ANAs/ENAs) were present up to a year after infection, and if they were associated with the development of clinically relevant post-acute sequalae of COVID-19 (PASC) symptoms. METHODS: A rapid-assessment line immunoassay was used to measure circulating levels of ANAs/ENAs in 106 convalescent COVID-19 patients with varying acute phase severities at 3, 6 and 12 months post-recovery. Patient-reported fatigue, cough and dyspnoea were recorded at each time point. Multivariable logistic regression model and receiver operating curves were used to test the association of autoantibodies with patient-reported outcomes and pro-inflammatory cytokines. RESULTS: Compared to age- and sex-matched healthy controls (n=22) and those who had other respiratory infections (n=34), patients with COVID-19 had higher detectable ANAs at 3 months post-recovery (p<0.001). The mean number of ANA autoreactivities per individual decreased between 3 and 12 months (from 3.99 to 1.55) with persistent positive titres associated with fatigue, dyspnoea and cough severity. Antibodies to U1-snRNP and anti-SS-B/La were both positively associated with persistent symptoms of fatigue (p<0.028, area under the curve (AUC) 0.86) and dyspnoea (p<0.003, AUC=0.81). Pro-inflammatory cytokines such as tumour necrosis factor (TNF)-α and C-reactive protein predicted the elevated ANAs at 12 months. TNF-α, D-dimer and interleukin-1ß had the strongest association with symptoms at 12 months. Regression analysis showed that TNF-α predicted fatigue (ß=4.65, p=0.004) and general symptomaticity (ß=2.40, p=0.03) at 12 months. INTERPRETATION: Persistently positive ANAs at 12 months post-COVID are associated with persisting symptoms and inflammation (TNF-α) in a subset of COVID-19 survivors. This finding indicates the need for further investigation into the role of autoimmunity in PASC.


Asunto(s)
Autoanticuerpos , COVID-19 , Humanos , Síndrome Post Agudo de COVID-19 , Factor de Necrosis Tumoral alfa , Tos , Anticuerpos Antinucleares , Citocinas , Fatiga
15.
Sci Rep ; 12(1): 22476, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577785

RESUMEN

Eosinophils are granulocytes that play a significant role in the pathogenesis of asthma and other airway diseases. Directing patient treatment based on the level of eosinophilia has been shown to be extremely effective in reducing exacerbations and therefore has tremendous potential as a routine clinical test. Herein, we describe the in vitro selection and optimization of DNA aptamers that bind to eosinophil peroxidase (EPX), a protein biomarker unique to eosinophils. Fifteen rounds of magnetic bead aptamer selection were performed prior to high throughput DNA sequencing. The top 10 aptamer candidates were assessed for EPX binding using a mobility shift assay. This process identified a lead aptamer candidate termed EAP1-05 with low nanomolar affinity and high specificity for EPX over other common sputum proteins. This aptamer sequence was further optimized through truncation and used to develop an easy-to-use colourimetric pull-down assay that can detect EPX over a concentration range from 1 - 100 nM in processed sputum. Forty-six clinical samples were processed using a new sputum dispersal method, appropriate for a rapid assessment assay, that avoids centrifugation and lengthy processing times. The assay showed 89% sensitivity and 96% specificity to detect eosinophilia (compared to gold standard sputum cytometry), with results being produced in under an hour. This assay could allow for an easy assessment of eosinophil activity in the airway to guide anti-inflammatory therapy for several airway diseases.


Asunto(s)
Asma , Eosinofilia , Humanos , Peroxidasa del Eosinófilo/metabolismo , Esputo/metabolismo , Eosinofilia/patología , Eosinófilos/metabolismo , Asma/metabolismo
17.
Clin Exp Allergy ; 52(12): 1365-1378, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35993511

RESUMEN

Biologic therapies in asthma are indicated in severe disease, and they are directed against specific inflammatory modulators that contribute to pathogenesis and severity. Currently approved biologics target T2 cytokines (IgE, IL-5, IL-4/IL-13, and TLSP) and have demonstrated efficacy in clinical outcomes such as exacerbation rate and oral corticosteroid dose reductions, blood and airway eosinophil depletion, and lung function improvement. However, a proportion of these patients may show inadequate responses to biologics, with either initial lack of improvement or clinical and functional worsening after an optimal initial response. Exacerbations while on a biologic may be due to several reasons, including imprecise identification of the dominant effector pathway contributing to severity, additional inflammatory pathways that are not targeted by the biologic, inaccuracies of the biomarker used to guide therapy, inadequate dosing schedules, intercurrent airway infections, anti-drug neutralizing antibodies, and a novel phenomenon of autoimmune responses in the airways interfering with the effectiveness of the monoclonal antibodies. This review, illustrated using case scenarios, describes the underpinnings of airway autoimmune responses in driving exacerbations while patients are being treated with biologics, device a strategy to evaluate such exacerbations, an algorithm to switch between biologics, and perhaps to consider two biologics concurrently.


Asunto(s)
Antiasmáticos , Asma , Humanos , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Autoinmunidad , Eosinófilos/metabolismo , Corticoesteroides/uso terapéutico , Interleucina-13
18.
Eur Respir J ; 60(6)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35777765

RESUMEN

BACKGROUND: Local airway autoimmune responses may contribute to steroid dependence and persistent eosinophilia in severe asthma. Auto-IgG antibodies directed against granule proteins such as eosinophil peroxidase (EPX), macrophage scavenger receptor with collagenous structure (MARCO) and nuclear/extranuclear antigens (antinuclear antibodies (ANAs)) have been reported. Our objective was to describe the prevalence and clinical characteristics of asthmatic patients with airway autoreactivity, and to assess if this could be predicted from clinical history of autoreactivity. METHODS: We analysed anti-EPX, anti-MARCO and ANAs in 218 sputum samples collected prospectively from 148 asthmatic patients, and evaluated their association with lung function parameters, blood/airway inflammation, severity indices and exacerbations. Additionally, 107 of these patients consented to fill out an autoimmune checklist to determine personal/family history of systemic autoimmune disease and symptoms. RESULTS: Out of the 148 patients, 59 (40%) were anti-EPX IgG+, 53 (36%) were anti-MARCO IgG+ and 64 out of 129 (50%) had ≥2 nuclear/extranuclear autoreactivities. A composite airway autoreactivity score (CAAS) demonstrated that 82 patients (55%) had ≥2 airway autoreactivities (considered as CAAS+). Increased airway eosinophil degranulation (OR 15.1, 95% CI 1.1-199.4), increased blood leukocytes (OR 3.5, 95% CI 1.3-10.1) and reduced blood lymphocytes (OR 0.19, 95% CI 0.04-0.84) predicted CAAS+. A third of CAAS+ patients reported an exacerbation, associated with increased anti-EPX and/or anti-MARCO IgG (p<0.05). While no association was found between family history or personal diagnosis of autoimmune disease, 30% of CAAS+ asthmatic patients reported sicca symptoms (p=0.02). Current anti-inflammatory (inhaled/oral corticosteroids and/or adjunct anti-interleukin-5 biologics) treatment does not attenuate airway autoantibodies, irrespective of eosinophil suppression. CONCLUSION: We report 55% of moderate-severe asthmatic patients to have airway autoreactivity that persists despite anti-inflammatory treatment and is associated with exacerbations.


Asunto(s)
Asma , Enfermedades Autoinmunes , Humanos , Autoanticuerpos , Esputo/química , Eosinófilos , Antiinflamatorios/uso terapéutico , Inmunoglobulina G
19.
Eur Respir J ; 60(4)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35236724

RESUMEN

INTRODUCTION: Severe eosinophilic asthma is characterised by frequent exacerbations and a relative insensitivity to steroids. Experimentally, smoking may induce eosinophilic airway inflammation, but the impact in patients with severe asthma is not clear. OBJECTIVE: To investigate the association between smoking exposure in patients with severe asthma, and eosinophilic inflammation and activation, as well as airway autoimmunity and steroid responsiveness. METHODS: Patients with severe asthma according to European Respiratory Society/American Thoracic Society criteria were assessed with sputum samples, analysed by cell differential count, and for the presence of free eosinophil granules (FEGs), autoantibodies against eosinophil peroxidase (EPX) and macrophage receptor with collagenous structure (MARCO). A subgroup of patients with eosinophilic airway inflammation was re-assessed after a 2-week course of prednisolone. RESULTS: 132 severe asthmatics were included in the study. 39 (29.5%) patients had ≥10 pack-years of smoking history: 36 (27.3%) were former smokers and three (2.3%) current smokers; and 93 (70.5%) had <10 pack-years exposure. Eosinophilic airway inflammation was more prevalent among patients with ≥10 pack-years (66.7%), compared to patients with <10 pack-years (38.7%, p=0.03), as was the level of FEGs (p=0.001) and both anti-EPX and anti-MARCO (p<0.05 and p<0.0001, respectively). Omitting current smokers did not affect these associations. Furthermore, prednisolone reduced, but did not normalise, sputum eosinophils in patients with a ≥10 pack-year smoking history. CONCLUSION: In patients with severe asthma, a former smoking history is associated with eosinophilic airway inflammation and activation and relative insensitivity to steroids, as well as airway autoimmunity.


Asunto(s)
Asma , Eosinofilia Pulmonar , Autoanticuerpos , Autoinmunidad , Peroxidasa del Eosinófilo , Eosinófilos , Humanos , Inflamación , Recuento de Leucocitos , Prednisolona , Fumar/efectos adversos , Esputo
20.
Respir Res ; 23(1): 8, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022042

RESUMEN

BACKGROUND: Excess pulmonary iron has been implicated in the pathogenesis of lung disease, including asthma and COPD. An association between higher iron content in sputum macrophages and infective exacerbations of COPD has previously been demonstrated. OBJECTIVES: To assess the mechanisms of pulmonary macrophage iron sequestration, test the effect of macrophage iron-loading on cellular immune function, and prospectively determine if sputum hemosiderin index can predict infectious exacerbations of COPD. METHODS: Intra- and extracellular iron was measured in cell-line-derived and in freshly isolated sputum macrophages under various experimental conditions including treatment with exogenous IL-6 and hepcidin. Bacterial uptake and killing were compared in the presence or absence of iron-loading. A prospective cohort of COPD patients with defined sputum hemosiderin indices were monitored to determine the annual rate of severe infectious exacerbations. RESULTS: Gene expression studies suggest that airway macrophages have the requisite apparatus of the hepcidin-ferroportin axis. IL-6 and hepcidin play roles in pulmonary iron sequestration, though IL-6 appears to exert its effect via a hepcidin-independent mechanism. Iron-loaded macrophages had reduced uptake of COPD-relevant organisms and were associated with higher growth rates. Infectious exacerbations were predicted by sputum hemosiderin index (ß = 0.035, p = 0.035). CONCLUSIONS: We demonstrate in-vitro and population-level evidence that excess iron in pulmonary macrophages may contribute to recurrent airway infection in COPD. Specifically, IL-6-dependent iron sequestration by sputum macrophages may result in immune cell dysfunction and ultimately lead to increased frequency of infective exacerbation.


Asunto(s)
Hierro/metabolismo , Macrófagos Alveolares/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Esputo/metabolismo , Anciano , Femenino , Estudios de Seguimiento , Humanos , Recuento de Leucocitos , Macrófagos Alveolares/patología , Masculino , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/patología , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...