Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 18705, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127966

RESUMEN

Phylogenetically closely related species are often assumed to have similar responses to environmental conditions, but species-specific responses have also been described. These two scenarios may have different conservation implications. We tested these two hypotheses for Prionailurus cats (P. rubiginosus, P. bengalensis, P. viverrinus) in the Indian subcontinent and show its implications on species current protected area coverage and climatic suitability trends through time. We fitted ecological niche models with current environmental conditions and calculated niche overlap. In addition, we developed a model for the Jungle Cat Felis chaus to compare species responses and niche overlap estimates within Prionailurus with those for a related sympatric small cat species. Then we estimated the proportion of current suitable environment covered by protected area and projected climatic models from past (last interglacial) to future (2070; RCP4.5 and RCP8.5) conditions to show implications on population management and conservation. The hypothesis of a similar response and niche overlap among closely related species is not supported. Protected area coverage was lowest for P. viverrinus (mean = 0.071, SD = 0.012) and highest for P. bengalensis (mean = 0.088, SD = 0.006). In addition, the proportion of the subcontinent with suitable climate varied through time and was species-specific. For P. bengalensis, climatic suitability shrunk since at least the mid-Holocene, a trend that can be intensified by human-induced climate warming. Concerning P. viverrinus, most predictions show stable future climatic suitability, but a few indicated potential loss. Climatic suitability for P. rubiginous was predicted to remain stable but the species exhibited a negative association with intensive agriculture. Similar responses to environmental change by phylogenetically closely related species should not be assumed and have implications on protected area coverage and natural trends of species climatic suitability over time. This should be taken into account during conservation and management actions.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Felidae/fisiología , Agricultura , Animales , Clima , Cambio Climático , Análisis por Conglomerados , Felidae/clasificación , Geografía , India , Filogenia , Especificidad de la Especie
2.
Ecol Evol ; 9(8): 4864-4874, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31031949

RESUMEN

AIM: The nested pattern in the geographical distribution of three Indian owlets, resulting in a gradient of endemicity, is hypothesized to be an impact of historical climate change. In current time, the Forest Owlet Athene blewitti is endemic to central India, and its range is encompassed within the ranges of the Jungle Owlet Glaucidium radiatum (distributed through South Asia) and Spotted Owlet Athene brama (distributed through Iran, South and Southeast Asia). Another phylogenetically close species, Little Owl Athene noctua, which is largely Palearctic in distribution, is hypothesized to have undergone severe range reduction during the Last Glacial Maximum, showing a postglacial expansion. The present study tests hypotheses on the possible role of Quaternary climatic fluctuations in shaping geographical ranges of owlets. METHODS: We used primary field observations, open access data, and climatic niche modeling to construct climatic niches of four owlets for four periods, the Last Interglacial (~120-140 Ka), Last Glacial Maximum (~22 Ka), Mid-Holocene (~6 Ka), and Current (1960-1990). We performed climatic niche extent, breadth, and overlap analyses and tested if climatically suitable areas for owlets are nested in a relatively stable climate. RESULTS: Climatically suitable areas for all owlets examined underwent cycles of expansion and reduction or a gradual expansion or reduction since the Last Interglacial. The Indian owlets show significant climatic niche overlap in the current period. Climatically suitable areas for Little Owl shifted southwards during the Last Glacial Maximum and expanded northwards in the postglaciation period. For each owlet, the modeled climatic niches were nested in climatically stable areas. MAIN CONCLUSIONS: The study highlights the impact of Quaternary climate change in shaping the present distribution of owlets. This is relevant to the current scenario of climate change and global warming and can help inform conservation strategies, especially for the extremely range-restricted Forest Owlet.

3.
PLoS One ; 13(2): e0192359, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29401484

RESUMEN

Range-restricted species generally have specific niche requirements and may often have unique evolutionary histories. Unfortunately, many of these species severely lack basic research, resulting in poor conservation strategies. The phylogenetic relationship of the Critically Endangered Forest Owlet Heteroglaux blewitti has been the subject of a century-old debate. The current classifications based on non-phylogenetic comparisons of morphology place the small owls of Asia into three genera, namely, Athene, Glaucidium, and Heteroglaux. Based on morphological and anatomical data, H. blewitti has been alternatively hypothesized to belong within Athene, Glaucidium, or its own monotypic genus Heteroglaux. To test these competing hypotheses, we sequenced six loci (~4300 bp data) and performed phylogenetic analyses of owlets. Mitochondrial and nuclear trees were not congruent in their placement of H. blewitti. However, both mitochondrial and nuclear combined datasets showed strong statistical support with high maximum likelihood bootstrap (>/ = 90) and Bayesian posterior probability values (>/ = 0.98) for H. blewitti being nested in the currently recognized Athene group, but not sister to Indian A. brama. The divergence of H. blewitti from its sister taxa was between 4.3 and 5.7 Ma coinciding with a period of drastic climatic changes in the Indian subcontinent. This study presented the first genetic analysis of H. blewitti, a Critically Endangered species, and addressed the long debate on the relationships of the Athene-Heteroglaux-Glaucidium complex. We recommend further studies with more data and complete taxon sampling to understand the biogeography of Indian Athene species.


Asunto(s)
Especies en Peligro de Extinción , Estrigiformes , Animales , Teorema de Bayes , Conservación de los Recursos Naturales , Fósiles , Filogenia , Estrigiformes/clasificación
4.
J Hered ; 108(4): 349-360, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28498987

RESUMEN

The Leopard cat Prionailurus bengalensis is a habitat generalist that is widely distributed across Southeast Asia. Based on morphological traits, this species has been subdivided into 12 subspecies. Thus far, there have been few molecular studies investigating intraspecific variation, and those had been limited in geographic scope. For this reason, we aimed to study the genetic structure and evolutionary history of this species across its very large distribution range in Asia. We employed both PCR-based (short mtDNA fragments, 94 samples) and high throughput sequencing based methods (whole mitochondrial genomes, 52 samples) on archival, noninvasively collected and fresh samples to investigate the distribution of intraspecific genetic variation. Our comprehensive sampling coupled with the improved resolution of a mitochondrial genome analyses provided strong support for a deep split between Mainland and Sundaic Leopard cats. Although we identified multiple haplogroups within the species' distribution, we found no matrilineal evidence for the distinction of 12 subspecies. In the context of Leopard cat biogeography, we cautiously recommend a revision of the Prionailurus bengalensis subspecific taxonomy: namely, a reduction to 4 subspecies (2 mainland and 2 Sundaic forms).


Asunto(s)
Felidae/genética , Variación Genética , Genética de Población , Genoma Mitocondrial , Animales , Asia Sudoriental , Evolución Biológica , Citocromos b/genética , ADN Mitocondrial/genética , Felidae/clasificación , Haplotipos , Filogeografía , Análisis de Secuencia de ADN
5.
PLoS One ; 5(10): e13724, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21060831

RESUMEN

BACKGROUND: Comparative phylogeography links historical population processes to current/ecological processes through congruent/incongruent patterns of genetic variation among species/lineages. Despite high biodiversity, India lacks a phylogeographic paradigm due to limited comparative studies. We compared the phylogenetic patterns of Indian populations of jungle cat (Felis chaus) and leopard cat (Prionailurus bengalensis). Given similarities in their distribution within India, evolutionary histories, body size and habits, congruent patterns of genetic variation were expected. METHODOLOGY/PRINCIPAL FINDINGS: We collected scats from various biogeographic zones in India and analyzed mtDNA from 55 jungle cats (460 bp NADH5, 141 bp cytochrome b) and 40 leopard cats (362 bp NADH5, 202 bp cytochrome b). Jungle cats revealed high genetic variation, relatively low population structure and demographic expansion around the mid-Pleistocene. In contrast, leopard cats revealed lower genetic variation and high population structure with a F(ST) of 0.86 between North and South Indian populations. Niche-model analyses using two approaches (BIOCLIM and MaxEnt) support absence of leopard cats from Central India, indicating a climate associated barrier. We hypothesize that high summer temperatures limit leopard cat distribution and that a rise in temperature in the peninsular region of India during the LGM caused the split in leopard cat population in India. CONCLUSIONS/SIGNIFICANCE: Our results indicate that ecological variables describing a species range can predict genetic patterns. Our study has also resolved the confusion over the distribution of the leopard cat in India. The reciprocally monophyletic island population in the South mandates conservation attention.


Asunto(s)
Carnívoros/genética , Ecología , Variación Genética , Animales , Secuencia de Bases , Cartilla de ADN , Geografía , Haplotipos , India , Filogenia , Reacción en Cadena de la Polimerasa
6.
BMC Res Notes ; 3(1): 159, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20525407

RESUMEN

BACKGROUND: The order Carnivora is well represented in India, with 58 of the 250 species found globally, occurring here. However, small carnivores figure very poorly in research and conservation policies in India. This is mainly due to the dearth of tested and standardized techniques that are both cost effective and conducive to small carnivore studies in the field. In this paper we present a non-invasive genetic technique standardized for the study of Indian felids and canids with the use of PCR amplification and restriction enzyme digestion of scat collected in the field. FINDINGS: Using existing sequences of felids and canids from GenBank, we designed primers from the 16S rRNA region of the mitochondrial genome and tested these on ten species of felids and five canids. We selected restriction enzymes that would cut the selected region differentially for various species within each family. We produced a restriction digestion profile for the potential differentiation of species based on fragment patterns. To test our technique, we used felid PCR primers on scats collected from various habitats in India, representing varied environmental conditions. Amplification success with field collected scats was 52%, while 86% of the products used for restriction digestion could be accurately assigned to species. We verified this through sequencing. A comparison of costs across the various techniques currently used for scat assignment showed that this technique was the most practical and cost effective. CONCLUSIONS: The species-specific key developed in this paper provides a means for detailed investigations in the future that focus on elusive carnivores in India and this approach provides a model for other studies in areas of Asia where many small carnivores co-occur.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...