Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L728-L741, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877223

RESUMEN

Airway epithelial homeostasis is under constant threat due to continuous exposure to the external environment, and abnormally robust sensitivity to external stimuli is critical to the development of airway diseases, including asthma. Ku is a key nonhomologous end-joining DNA repair protein with diverse cellular functions such as VDJ recombination and telomere length maintenance. Here, we show a novel function of Ku in alleviating features of allergic airway inflammation via the regulation of mitochondrial and endoplasmic reticulum (ER) stress. We first determined that airway epithelial cells derived from both asthmatic lungs and murine asthma models demonstrate increased expression of 8-hydroxy-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage. Ku protein expression was dramatically reduced in the bronchial epithelium of patients with asthma as well as in human bronchial epithelial cells exposed to oxidative stress. Knockdown of Ku70 or Ku80 in naïve mice elicited mitochondrial collapse or ER stress, leading to bronchial epithelial cell apoptosis and spontaneous development of asthma-like features, including airway hyperresponsiveness, airway inflammation, and subepithelial fibrosis. These findings demonstrate an essential noncanonical role for Ku proteins in asthma pathogenesis, likely via maintenance of organelle homeostasis. This novel function of Ku proteins may also be important in other disease processes associated with organelle stress.


Asunto(s)
Células Epiteliales/metabolismo , Homeostasis/fisiología , Inflamación/prevención & control , Autoantígeno Ku/metabolismo , Animales , Asma/patología , Asma/prevención & control , Estrés del Retículo Endoplásmico/fisiología , Células Epiteliales/patología , Humanos , Inflamación/metabolismo , Pulmón/metabolismo , Pulmón/patología , Ratones , Estrés Oxidativo/fisiología , Hipersensibilidad Respiratoria/patología
2.
Nat Commun ; 11(1): 1545, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32210226

RESUMEN

Aging is characterized by a gradual loss of function occurring at the molecular, cellular, tissue and organismal levels. At the chromatin level, aging associates with progressive accumulation of epigenetic errors that eventually lead to aberrant gene regulation, stem cell exhaustion, senescence, and deregulated cell/tissue homeostasis. Nuclear reprogramming to pluripotency can revert both the age and the identity of any cell to that of an embryonic cell. Recent evidence shows that transient reprogramming can ameliorate age-associated hallmarks and extend lifespan in progeroid mice. However, it is unknown how this form of rejuvenation would apply to naturally aged human cells. Here we show that transient expression of nuclear reprogramming factors, mediated by expression of mRNAs, promotes a rapid and broad amelioration of cellular aging, including resetting of epigenetic clock, reduction of the inflammatory profile in chondrocytes, and restoration of youthful regenerative response to aged, human muscle stem cells, in each case without abolishing cellular identity.


Asunto(s)
Núcleo Celular/metabolismo , Reprogramación Celular/fisiología , Senescencia Celular/fisiología , ARN Mensajero/metabolismo , Rejuvenecimiento/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Animales , Células Cultivadas , Condrocitos , Metilación de ADN/fisiología , Células Endoteliales , Epigénesis Genética/fisiología , Femenino , Fibroblastos , Perfilación de la Expresión Génica , Humanos , Microscopía Intravital , Masculino , Ratones , Persona de Mediana Edad , Células Musculares , Cultivo Primario de Células , Células Madre , Adulto Joven
3.
EMBO J ; 33(9): 994-1010, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24431222

RESUMEN

There is emerging evidence that stem cells can rejuvenate damaged cells by mitochondrial transfer. Earlier studies show that epithelial mitochondrial dysfunction is critical in asthma pathogenesis. Here we show for the first time that Miro1, a mitochondrial Rho-GTPase, regulates intercellular mitochondrial movement from mesenchymal stem cells (MSC) to epithelial cells (EC). We demonstrate that overexpression of Miro1 in MSC (MSCmiro(Hi)) leads to enhanced mitochondrial transfer and rescue of epithelial injury, while Miro1 knockdown (MSCmiro(Lo)) leads to loss of efficacy. Treatment with MSCmiro(Hi) was associated with greater therapeutic efficacy, when compared to control MSC, in mouse models of rotenone (Rot) induced airway injury and allergic airway inflammation (AAI). Notably, airway hyperresponsiveness and remodeling were reversed by MSCmiro(Hi) in three separate allergen-induced asthma models. In a human in vitro system, MSCmiro(Hi) reversed mitochondrial dysfunction in bronchial epithelial cells treated with pro-inflammatory supernatant of IL-13-induced macrophages. Anti-inflammatory MSC products like NO, TGF-ß, IL-10 and PGE2, were unchanged by Miro1 overexpression, excluding non-specific paracrine effects. In summary, Miro1 overexpression leads to increased stem cell repair.


Asunto(s)
Lesión Pulmonar/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Mitocondrias/metabolismo , Proteínas de Unión al GTP rho/fisiología , Animales , Transporte Biológico/genética , Células Cultivadas , Terapia Genética/métodos , Humanos , Pulmón/patología , Lesión Pulmonar/patología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Mitocondrias/trasplante , Células 3T3 NIH , Nanotubos , Resultado del Tratamiento , Proteínas de Unión al GTP rho/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...