Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 82(13): 2458-2471, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35583996

RESUMEN

The transcription factor Forkhead box M1 (FoxM1) is overexpressed in breast cancers and correlates with poor prognosis. Mechanistically, FoxM1 associates with CBP to activate transcription and with Rb to repress transcription. Although the activating function of FoxM1 in breast cancer has been well documented, the significance of its repressive activity is poorly understood. Using CRISPR-Cas9 engineering, we generated a mouse model that expresses FoxM1-harboring point mutations that block binding to Rb while retaining its ability to bind CBP. Unlike FoxM1-null mice, mice harboring Rb-binding mutant FoxM1 did not exhibit significant developmental defects. The mutant mouse line developed PyMT-driven mammary tumors that were deficient in lung metastasis, which was tumor cell-intrinsic. Single-cell RNA-seq of the tumors revealed a deficiency in prometastatic tumor cells and an expansion of differentiated alveolar type tumor cells, and further investigation identified that loss of the FoxM1/Rb interaction caused enhancement of the mammary alveolar differentiation program. The FoxM1 mutant tumors also showed increased Pten expression, and FoxM1/Rb was found to activate Akt signaling by repressing Pten. In human breast cancers, expression of FoxM1 negatively correlated with Pten mRNA. Furthermore, the lack of tumor-infiltrating cells in FoxM1 mutant tumors appeared related to decreases in pro-metastatic tumor cells that express factors required for infiltration. These observations demonstrate that the FoxM1/Rb-regulated transcriptome is critical for the plasticity of breast cancer cells that drive metastasis, identifying a prometastatic role of Rb when bound to FoxM1. SIGNIFICANCE: This work provides new insights into how the interaction between FoxM1 and Rb facilitates the evolution of metastatic breast cancer cells by altering the transcriptome.


Asunto(s)
Neoplasias de la Mama , Proteína Forkhead Box M1/metabolismo , Factores de Transcripción Forkhead , Animales , Neoplasias de la Mama/patología , Diferenciación Celular/genética , Línea Celular Tumoral , Femenino , Proteína Forkhead Box M1/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Transducción de Señal , Transcripción Genética
2.
Oncogene ; 39(8): 1784-1796, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31740787

RESUMEN

Cancers in the oral/head & neck region (HNSCC) are aggressive due to high incidence of recurrence and distant metastasis. One prominent feature of aggressive HNSCC is the presence of severely hypoxic regions in tumors and activation of hypoxia-inducible factors (HIFs). In this study, we report that the XPE gene product DDB2 (damaged DNA binding protein 2), a nucleotide excision repair protein, is upregulated by hypoxia. Moreover, DDB2 inhibits HIF1α in HNSCC cells. It inhibits HIF1α in both normoxia and hypoxia by reducing mRNA expression. Knockdown of DDB2 enhances the expression of angiogenic markers and promotes tumor growth in a xenograft model. We show that DDB2 binds to an upstream promoter element in the HIF1Α gene and promotes histone H3K9 trimethylation around the binding site by recruiting Suv39h1. Also, we provide evidence that DDB2 has a significant suppressive effect on expression of the endogenous markers of hypoxia that are also prognostic indicators in HNSCC. Together, these results describe a new mechanism of hypoxia regulation that opposes expression of HIF1Α mRNA and the hypoxia-response genes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Hipoxia Tumoral , Línea Celular Tumoral , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
3.
Sci Rep ; 8(1): 15850, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30374061

RESUMEN

A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.

4.
Sci Rep ; 7: 46017, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387346

RESUMEN

FoxM1b is a cell cycle-regulated transcription factor, whose over-expression is a marker for poor outcome in cancers. Its transcriptional activation function requires phosphorylation by Cdk1 or Cdk2 that primes FoxM1b for phosphorylation by Plk1, which triggers association with the co-activator CBP. FoxM1b also possesses transcriptional repression function. It represses the mammary differentiation gene GATA3 involving DNMT3b and Rb. We investigated what determines the two distinct functions of FoxM1b: activation and repression. We show that Rb binds to the C-terminal activation domain of FoxM1b. Analyses with phospho-defective and phospho-mimetic mutants of FoxM1b identified a critical role of the Plk1 phosphorylation sites in regulating the binding of FoxM1b to Rb and DNMT3b. That is opposite of what was seen for the interaction of FoxM1b with CBP. We show that, in addition to GATA3, FoxM1b also represses the mammary luminal differentiation marker FoxA1 by promoter-methylation, and that is regulated by the Plk1 phosphorylation sites in FoxM1b. Our results show that the Plk1 phosphorylation sites in FoxM1b serve as a regulator for its repressor function, and they provide insights into how FoxM1b inhibits differentiation genes and activates proliferation genes during cancer progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteína Forkhead Box M1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Proteína de Retinoblastoma/metabolismo , Sitios de Unión , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Proteína Forkhead Box M1/química , Factor de Transcripción GATA3/genética , Humanos , Células MCF-7 , Mutación/genética , Fragmentos de Péptidos/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , Sialoglicoproteínas/metabolismo , ADN Metiltransferasa 3B , Quinasa Tipo Polo 1
5.
PLoS One ; 8(8): e70987, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951060

RESUMEN

MicroRNA (miRNA or miR) inhibition of oncogenic related pathways has been shown to be a promising therapeutic approach for cancer. Aberrant lipid and cholesterol metabolism is involved in prostate cancer development and progression to end-stage disease. We recently demonstrated that a key transcription factor for lipogenesis, sterol regulatory element-binding protein-1 (SREBP-1), induced fatty acid and lipid accumulation and androgen receptor (AR) transcriptional activity, and also promoted prostate cancer cell growth and castration resistance. SREBP-1 was overexpressed in human prostate cancer and castration-resistant patient specimens. These experimental and clinical results indicate that SREBP-1 is a potential oncogenic transcription factor in prostate cancer. In this study, we identified two miRNAs, miR-185 and 342, that control lipogenesis and cholesterogenesis in prostate cancer cells by inhibiting SREBP-1 and 2 expression and down-regulating their targeted genes, including fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR). Both miR-185 and 342 inhibited tumorigenicity, cell growth, migration and invasion in prostate cancer cell culture and xenograft models coincident with their blockade of lipogenesis and cholesterogenesis. Intrinsic miR-185 and 342 expression was significantly decreased in prostate cancer cells compared to non-cancerous epithelial cells. Restoration of miR-185 and 342 led to caspase-dependent apoptotic death in prostate cancer cells. The newly identified miRNAs, miR-185 and 342, represent a novel targeting mechanism for prostate cancer therapy.


Asunto(s)
Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias de la Próstata/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Animales , Caspasas/genética , Caspasas/metabolismo , Línea Celular Tumoral , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Lipogénesis/genética , Masculino , Ratones , MicroARNs/metabolismo , Trasplante de Neoplasias , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Carga Tumoral
6.
Cancer Res ; 71(12): 4303-13, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21512132

RESUMEN

The MST1 serine-threonine kinase, a component of the RASSF1-LATS tumor suppressor network, is involved in cell proliferation and apoptosis and has been implicated in cancer. However, the physiologic role of MST1 in prostate cancer (PCa) is not well understood. Here, we investigated the possibility of a biochemical and functional link between androgen receptor (AR) and MST1 signaling. We showed that MST1 forms a protein complex with AR and antagonizes AR transcriptional activity as shown by coimmunoprecipitation (co-IP), promoter reporter analysis, and molecular genetic methods. In vitro kinase and site-specific mutagenesis approaches indicate that MST1 is a potent AR kinase; however, the kinase activity of MST1 and its proapoptotic functions were shown not to be involved in inhibition of AR. MST1 was also found in AR-chromatin complexes, and enforced expression of MST1 reduced the binding of AR to a well-characterized, androgen-responsive region within the prostate-specific antigen promoter. MST1 suppressed PCa cell growth in vitro and tumor growth in mice. Because MST1 is also involved in regulating the AKT1 pathway, this kinase may be an important new link between androgenic and growth factor signaling and a novel therapeutic target in PCa.


Asunto(s)
Caspasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Receptores Androgénicos/fisiología , Antagonistas de Receptores Androgénicos , Animales , Células COS , Chlorocebus aethiops , Cromatina/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Fosforilación , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/prevención & control , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
7.
Cancer Res ; 69(6): 2210-8, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19258514

RESUMEN

The regulation of androgen receptor (AR) expression in prostate cancer is still poorly understood. The activation of the epidermal growth factor receptor (EGFR) in prostate cancer cells was previously shown to lower AR expression by a rapamycin-sensitive, posttranscriptional mechanism involving the AR mRNA 5'-untranslated region (5'-UTR). In a search for an intermediate within the EGFR/phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway that regulates AR at this site, we identified the nucleic acid-binding protein, heterogeneous nuclear ribonucleoprotein K (hnRNP-K), by mass spectrometric analysis of Akt immune complexes from lipid raft-enriched subcellular fractions. We show here that hnRNP-K is a novel inhibitor of AR mRNA translation that regulates androgen-responsive gene expression and prostate cancer cell proliferation. A functional hnRNP-K binding site involved in down-regulating AR protein levels was identified in the AR mRNA 5'-UTR. Further analysis revealed that hnRNP-K is also able to inhibit AR translation in the absence of the 5'-UTR, consistent with the presence of additional predicted hnRNP-K binding sites within the AR open reading frame and in the 3'-UTR. Immunohistochemical analysis of a human prostate cancer tissue microarray revealed an inverse correlation between hnRNP-K expression and AR protein levels in organ-confined prostate tumors and a substantial decline in cytoplasmic hnRNP-K in metastases, despite an overall increase in hnRNP-K levels in metastatic tumors. These data suggest that translational inhibition of AR by hnRNP-K may occur in organ-confined tumors but possibly at a reduced level in metastases. HnRNP-K is the first protein identified that directly interacts with and regulates the AR translational apparatus.


Asunto(s)
Antagonistas de Receptores Androgénicos , Ribonucleoproteína Heterogénea-Nuclear Grupo K/fisiología , Animales , Sitios de Unión , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Regulación hacia Abajo , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Humanos , Masculino , Regiones Promotoras Genéticas , Antígeno Prostático Específico/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Androgénicos/biosíntesis , Receptores Androgénicos/genética
8.
BMC Cell Biol ; 9: 30, 2008 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-18534013

RESUMEN

BACKGROUND: Cholesterol-rich membrane microdomains known as lipid rafts have been implicated in diverse physiologic processes including lipid transport and signal transduction. Lipid rafts were originally defined as detergent-resistant membranes (DRMs) due to their relative insolubility in cold non-ionic detergents. Recent findings suggest that, although DRMs are not equivalent to lipid rafts, the presence of a given protein within DRMs strongly suggests its potential for raft association in vivo. Therefore, isolation of DRMs represents a useful starting point for biochemical analysis of lipid rafts. The physicochemical properties of DRMs present unique challenges to analysis of their protein composition. Existing methods of isolating DRM-enriched fractions involve flotation of cell extracts in a sucrose density gradient, which, although successful, can be labor intensive, time consuming and results in dilute sucrose-containing fractions with limited utility for direct proteomic analysis. In addition, several studies describing the proteomic characterization of DRMs using this and other approaches have reported the presence of nuclear proteins in such fractions. It is unclear whether these results reflect trafficking of nuclear proteins to DRMs or whether they arise from nuclear contamination during isolation. To address these issues, we have modified a published differential detergent extraction method to enable rapid DRM isolation that minimizes nuclear contamination and yields fractions compatible with mass spectrometry. RESULTS: DRM-enriched fractions isolated using the conventional or modified extraction methods displayed comparable profiles of known DRM-associated proteins, including flotillins, GPI-anchored proteins and heterotrimeric G-protein subunits. Thus, the modified procedure yielded fractions consistent with those isolated by existing methods. However, we observed a marked reduction in the percentage of nuclear proteins identified in DRM fractions isolated with the modified method (15%) compared to DRMs isolated by conventional means (36%). Furthermore, of the 21 nuclear proteins identified exclusively in modified DRM fractions, 16 have been reported to exist in other subcellular sites, with evidence to suggest shuttling of these species between the nucleus and other organelles. CONCLUSION: We describe a modified DRM isolation procedure that generates DRMs that are largely free of nuclear contamination and that is compatible with downstream proteomic analyses with minimal additional processing. Our findings also imply that identification of nuclear proteins in DRMs is likely to reflect legitimate movement of proteins between compartments, and is not a result of contamination during extraction.


Asunto(s)
Fraccionamiento Celular/métodos , Microdominios de Membrana/química , Proteínas de la Membrana/análisis , Proteómica/métodos , Núcleo Celular , Detergentes , Humanos , Espectrometría de Masas , Fracciones Subcelulares
9.
Cancer Res ; 67(13): 6238-46, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17616681

RESUMEN

The serine-threonine kinase, Akt, has been linked to cholesterol-sensitive signaling mechanisms, suggesting a possible means whereby cholesterol might affect tumor cell growth and survival. However, it has not been shown whether Akt itself, as distinct from upstream components of the pathway (e.g., membrane phosphoinositides), can be directly responsible for cholesterol-mediated effects. Consistent with this possibility, we identified an Akt1 subpopulation in cholesterol-rich lipid raft fractions prepared from LNCaP human prostate cancer cells. Phosphorylation of this Akt subspecies was ablated with methyl-beta-cyclodextrin, a cholesterol-binding compound, under conditions where nonlipid raft-resident Akt was unaffected. A myristoylated Akt1 (MyrAkt1) fusion protein expressed in LNCaP cells was found to be highly enriched in lipid rafts, indicating that oncogenic Akt is overrepresented in cholesterol-rich membranes compared with wild-type Akt. Notably, lipid raft-resident MyrAkt1 exhibited a markedly distinct substrate preference compared with MyrAkt1 immunoprecipitated from cytosol and nonraft membrane fractions, suggesting a redirection of signal transduction when the protein is present in cholesterol-rich membranes. Expression of MyrAkt1 in LNCaP cells overcame their characteristic dependence on constitutive signaling through the phosphoinositide 3'-kinase pathway. This protective effect was substantially diminished with cyclodextrin treatment. Phosphorylation of Akt substrates in lipid raft fractions, but not in cytosol/nonraft membrane fractions, was ablated with cyclodextrin. In addition, in control (LacZ transfected) cells, lipid raft fractions were relatively enriched in phosphorylated Akt substrates. Collectively, these data show that a subpopulation of Akt is cholesterol sensitive and that the oncogenic effects conferred by myristoylation arise, in part, from the tendency of the membrane-targeted form of the protein to reside in cholesterol-rich membrane microdomains.


Asunto(s)
Colesterol/metabolismo , Ácido Mirístico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Ciclodextrinas/farmacología , Humanos , Masculino , Microdominios de Membrana/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Fosforilación , Neoplasias de la Próstata/metabolismo , Transducción de Señal , Transfección
10.
J Biol Chem ; 282(40): 29584-93, 2007 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-17635910

RESUMEN

The serine-threonine kinase, Akt1/protein kinase Balpha is an important mediator of growth, survival, and metabolic signaling. Recent studies have implicated cholesterol-rich, lipid raft microdomains in survival signals mediated by Akt1. Here we address the role of lipid raft membranes as a potential site of intersection of androgenic and Akt1 signaling. A subpopulation of androgen receptor (AR) was found to localize to a lipid raft subcellular compartment in LNCaP prostate cancer cells. Endogenous AR interacted with endogenous Akt1 preferentially in lipid raft fractions and androgen substantially enhanced the interaction between the two proteins. The association of AR with Akt1 was inhibited by the anti-androgen, bicalutamide, but was not affected by inhibition of phosphoinositide 3-kinase (PI3K). Androgen promoted endogenous Akt1 activity in lipid raft fractions, in a PI3K-independent manner, within 10 min of treatment. Fusion of a lipid raft targeting sequence to AR enhanced localization of the receptor to rafts, and stimulated Akt1 activity in response to androgen, while reducing the cells' dependence on constitutive signaling through PI3K for cell survival. These findings suggest that signals channeled through AR and Akt1 intersect by a mechanism involving formation within lipid raft membranes of an androgen-responsive, extranuclear AR/Akt1 complex. Our results indicate that cholesterol-rich membrane microdomains play a role in transmitting non-genomic signals involving androgen and the Akt pathway in prostate cancer cells.


Asunto(s)
Microdominios de Membrana/química , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Androgénicos/metabolismo , Animales , Células COS , Línea Celular Tumoral , Supervivencia Celular , Chlorocebus aethiops , Regulación Enzimológica de la Expresión Génica , Humanos , Masculino , Microdominios de Membrana/metabolismo , Plásmidos/metabolismo , Neoplasias de la Próstata/metabolismo , Transducción de Señal
11.
Mol Endocrinol ; 21(9): 2056-70, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17550981

RESUMEN

Androgen receptor (AR) plays an important role in normal prostate function as well as in the etiology of prostate cancer. Activation of AR is dictated by hormone binding and by interactions with coregulators. Several of these coregulators are known targets of Ras-related signals. Recent evidence suggests that Ras activation may play a causal role in the progression of prostate cancer toward a more malignant and hormone-insensitive phenotype. In the present study, we used a transcription factor-transcription factor interaction array method to identify the zinc finger protein Ras-responsive element binding protein (RREB-1) as a partner and coregulator of AR. In LNCaP prostate cancer cells, RREB-1 was found to be present in a complex with endogenous AR as determined by coimmunoprecipitation, glutathione S-transferase pull down, and immunofluorescence analyses. RREB-1 bound to the prostate-specific antigen (PSA) promoter as assessed by chromatin immunoprecipitation. Transient expression of RREB-1 down-regulated AR-mediated promoter activity and suppressed expression of PSA protein. The repressor activity of RREB-1 was significantly attenuated by cotransfection of activated Ras. Moreover, expression of the dominant-negative N-17-Ras or, alternatively, use of the MAPK kinase inhibitor PD98059 [2-(2-amino-3-methyoxyphenyl)-4H-1-benzopyran-4-one] abolished the effect of Ras in attenuating RREB-1-mediated repression. Furthermore, inhibition of RREB-1 expression by RNA interference enhanced the effect of Ras on PSA promoter activity and PSA expression. In addition, activation of the Ras pathway depleted AR from the RREB-1/AR complex. Collectively, our data for the first time identify RREB-1 as a repressor of AR and further implicate the Ras/MAPK kinase pathway as a likely antagonist of the inhibitory effects of RREB-1 on androgenic signaling.


Asunto(s)
Andrógenos/fisiología , Proteínas de Unión al ADN/fisiología , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , Dedos de Zinc/fisiología , Anticuerpos/fisiología , Línea Celular , Humanos , Masculino , Receptores Androgénicos/inmunología
12.
Steroids ; 72(2): 210-7, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17173942

RESUMEN

The functional consequences of changes in membrane lipid composition that coincide with malignant growth are poorly understood. Sufficient data have been acquired from studies of lipid binding proteins, post-translational modifications of signaling proteins, and biochemical inhibition of lipidogenic pathways to indicate that growth and survival pathways might be substantially re-directed by alterations in the lipid content of membranes. Cholesterol and glycosphingolipids segregate into membrane patches that exhibit a liquid-ordered state in comparison to membrane domains containing relatively lower amounts of these classes of lipids. These "lipid raft" structures, which may vary in size and stability in different cell types, both accumulate and exclude signaling proteins and have been implicated in signal transduction through a number of cancer-relevant pathways. In prostate cancer cells, signaling from epidermal growth factor receptor (EGFR) to the serine-threonine kinase Akt1, as well as from IL-6 to STAT3, have been demonstrated to be influenced by experimental interventions that target cholesterol homeostasis. The recent finding that classical steroid hormone receptors also reside in these microdomains, and thus may function within these structures in a signaling capacity independent of their role as nuclear factors, suggests a novel means of cross-talk between receptor tyrosine kinase-derived and steroidogenic signals. Potential points of intersection between components of the EGFR family of receptor tyrosine kinases and androgen receptor signaling pathways, which may be sensitive to disruptions in cholesterol metabolism, are discussed. Understanding the manner in which these pathways converge within cholesterol-rich membranes may present new avenues for therapeutic intervention in hormone-dependent cancers.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Receptores ErbB/fisiología , Hormonas/fisiología , Transducción de Señal/fisiología , Colesterol/fisiología , Microdominios de Membrana/fisiología , Receptores Androgénicos/fisiología
13.
Exp Cell Res ; 312(19): 3782-95, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17011549

RESUMEN

The androgen receptor (AR) plays a key role in the development and function of male reproductive organs. Using a high-throughput transcription factor-transcription factor (TF-TF) interaction array method, we captured the AR interactomes in androgen-responsive LNCaP cells. Several known and unknown partners of AR, including AP-2, Pax 3/5 (BSAP), c-Rel, RREB-1, LIII BP, and NPAS2 were identified. We investigated one unreported AR-associated transcription factor, the proto-oncoprotein c-Rel, in detail. C-Rel belongs to the NF-kB/Rel families and is persistently active in a number of diseases, including cancer. The presence of c-Rel transcript, protein, and its in vitro and in vivo association with AR was determined. Co-localization of c-Rel with AR both in cytoplasm and nucleus was confirmed by indirect immunofluorescence analysis. Chromatin immunoprecipitation data indicated that c-Rel, like AR, is a part of the nucleoprotein complex regulating the androgen-responsive prostate-specific antigen (PSA) promoter. Overexpression of c-Rel downregulated the promoter activity of both PSA and GRE4-TATA-Luc plasmids in LNCaP and COS cells. Analysis of AR and c-Rel protein levels indicated that the promoter downregulation was not due to reciprocal decrease in the amounts of AR or c-Rel. In summary, we have identified several new partners of AR by using the TF-TF array method and have provided the first evidence of a functional role for c-Rel in androgen-responsive human prostate cancer cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Regulación hacia Abajo , Genes rel , Humanos , Masculino , Regiones Promotoras Genéticas , Antígeno Prostático Específico/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-rel , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección
14.
Ann Thorac Surg ; 81(3): 1034-42, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16488717

RESUMEN

BACKGROUND: A well-known histone deacetylase inhibitor, trichostatin A, was applied to non-small-cell lung cancer cells to determine whether inhibition of histone deacetylase leads to the production of proteins that either arrest tumor cell growth or lead to tumor cell death. METHODS: Trichostatin A (0.01 to 1.0 micromol/L) was applied to one normal lung fibroblast and four non-small-cell lung cancer lines, and its effect was determined by flow cytometry, annexin-V staining, immunoprecipitation, and Western blot analysis. RESULTS: Trichostatin A demonstrated tenfold greater growth inhibition in all four non-small-cell lung cancer lines compared with normal controls, with a concentration producing 50% inhibition ranging from 0.01 to 0.04 micromol/L for the tumor cell lines and 0.7 micromol/L for the normal lung fibroblast line. Trichostatin A treatment reduced the percentage of cells in S phase (10% to 23%) and increased G1 populations (10% to 40%) as determined by flow cytometry. Both annexin-V binding assay and upregulation of the protein, gelsolin (threefold to tenfold), demonstrated that the tumor cells were apoptotic, whereas normal cells were predominantly in cell cycle arrest. Trichostatin A increased histone H4 acetylation and expression of p21 twofold to 15-fold without significant effect on p16, p27, CDK2, and cyclin D1. CONCLUSIONS: Collectively, these data suggest that inhibition of histone deacetylation may provide a valuable approach for lung cancer treatment. We evaluated trichostatin A as a potential candidate for anticancer therapy in non-small-cell lung cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ácidos Hidroxámicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/patología , Ciclo Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciclina D1/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Gelsolina/metabolismo , Inhibidores de Histona Desacetilasas , Histonas/metabolismo , Humanos , Pulmón/efectos de los fármacos , Neoplasias Pulmonares/patología
15.
J Cell Mol Med ; 9(2): 387-97, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15963258

RESUMEN

Integrins are adhesion receptors that transmit signals bidirectionally across the plasma membrane. In our previous report we have shown that the squamous lung cancer cell line, Calu-1, binds to collagen type IV (Coll IV) through beta1-integrin and results in phosphorylation of focal adhesion kinase (FAK) (Ann Thorac Surg 2004; 78:450-457). Considering the critical role of FAK in cell migration, proliferation, and survival, here we investigated potential mechanisms of its activation and regulation in Calu-1 cells. We observed the phosphorylation of Tyr397 of FAK (the autophosphorylation site of FAK) and paxillin, the immediate downstream substrate of FAK following the adhesion of Calu-1 cells to Coll IV. FAK remains phosphorylated during proliferation either on Coll IV or on uncoated plates for 72 h, as determined by peroxivanadate treatment. Exposure of Calu-1 cells with 60 microM genistein, reduces FAK phosphorylation (7.6 fold) and cell proliferation. Extracellular signal regulated kinases (ERKs) were also phosphorylated after Coll IV attachment. Disruption of Calu-1 cell cytoskeleton integrity by 1-5 muM Cytochalasin D resulted in the inhibition of cell adhesion (50% to 75%, p<0.19 - 6.6 x 10(7)) and ERKs phosphorylation (2 fold) without any effect on FAK phosphorylation. Protein Kinase C inhibitor, Calphostin C at 100 and 250 nM concentrations did not block Coll IV induced FAK phosphorylation but activated the ERKs in a dose dependent manner. beta1-integrin is essential for Coll IV induced FAK activation, but it is not physically associated with FAK as determined by immunodetection assay. Collectively, this report defines the existence of multiple and potentially parallel Coll IV/beta1-integrin mediated signaling events in Calu-1 cells, which involve FAK, ERKs, and PKC.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/fisiología , Adhesión Celular/fisiología , Línea Celular Tumoral , Proliferación Celular , Colágeno Tipo IV/metabolismo , Citocalasina D/farmacología , Citoesqueleto/efectos de los fármacos , Citoesqueleto/fisiología , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Quinasa 1 de Adhesión Focal , Proteína-Tirosina Quinasas de Adhesión Focal , Humanos , Integrina beta1/metabolismo , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Naftalenos/farmacología , Fosforilación/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Tirosina/metabolismo
16.
Ann Thorac Surg ; 78(2): 450-7, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15276495

RESUMEN

BACKGROUND: The clinical phenomenon of lung cancer metastasis to specific target organs is believed to be a direct interaction between tumor cells and extracellular matrix components. During invasion, tumor cells attach to the basement membrane protein, collagen type IV, degrade it, migrate through blood vessels, and adhere to extracellular matrix proteins. METHODS: Four nonsmall-cell lung cancer cells were tested for adhesion, proliferation, migration and morphologic alterations on collagen type IV matrix by immunoprecipitation, Western blotting, phase contrast and time lapse video microscopy. RESULTS: Collagen type IV promoted Calu-1 cell adhesion (< 15 minutes) and motility (< 6 hours) without any significant effect on proliferation. beta(1)-integrin is essential for collagen type IV adhesion and 8 to 10 fold higher expression of beta1-integrin on the surface of Calu-1 cells was identified. A protein tyrosine phosphatase inhibitor, peroxyvanadate, caused 50% inhibition in the adhesion process within 5 minutes but exposure to 60 micromol/L genistein for 72 hours, a protein tyrosine kinase inhibitor, drastically inhibits Calu-1 cell proliferation (> 70%). We examined the influence of beta1-integrin, peroxyvanadate and genistein on the spreading morphogenesis of Calu-1 cells on Collagen type IV. Use of either 1 microg of anti beta1-integrin inhibitory antibody (P5D2), 100 micromol/L peroxyvanadate or 60 micromol/L genistein had dramatic influence on the spreading of Calu-1 cells. Finally, Focal adhesion kinase was identified as a phosphoprotein target. CONCLUSIONS: We have characterized an in vitro model of matrix-specific binding of a lung cancer cell line, Calu-1 to Coll IV. Calu-1 cells use primarily a beta1-integrin mediated intracellular tyrosine phosphorylation phenomenon as the key regulatory mechanism for its binding advantage to Coll IV matrix.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Colágeno Tipo IV/metabolismo , Integrina beta1/fisiología , Neoplasias Pulmonares/patología , Invasividad Neoplásica/fisiopatología , Proteínas de Neoplasias/fisiología , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , División Celular/efectos de los fármacos , División Celular/fisiología , Línea Celular Tumoral/citología , Línea Celular Tumoral/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Tamaño de la Célula/efectos de los fármacos , Medio de Cultivo Libre de Suero , Quinasa 1 de Adhesión Focal , Proteína-Tirosina Quinasas de Adhesión Focal , Genisteína/farmacología , Humanos , Microscopía por Video , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Tirosina Quinasas/fisiología , Seudópodos/efectos de los fármacos , Vanadatos/farmacología
17.
Gene ; 328: 153-65, 2004 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-15019995

RESUMEN

The Notch signaling pathway controls cell fate decisions and plays a critical role in normal development and diseases. The human mastermind-like (MAML) family members (MAML1, 2 and 3) encode critical transcriptional co-activators for Notch receptors. In this study, we cloned a murine cDNA that is highly homologous to the human MAML1 gene, Maml1. Mouse Maml1 encodes a nuclear protein, binds to the ankyrin repeat domain of Notch receptors, forms a ternary complex with the intracellular domain of Notch (ICN) and the DNA binding protein CSL, and enhances Notch-induced transcription of the target gene, HES-1. Therefore, Maml1 is the murine homologue for human MAML1 and functions as a transcriptional co-activator for Notch signaling. We also characterized the organization of the mouse Maml1 gene: It spans at least 35 kilobases (kb) on chromosome 11 and contains five exons and four introns. Analysis of the 5' flanking region revealed that the promoter is TATA-less, and contains consensus binding sites for transcription factors such as Sp1, glucocorticoid receptor (GR), activating transcription factor (ATF) and cAMP response element-binding protein (CREB). Moreover, we examined Maml1 expression during early mouse development and found that Maml1 gene is expressed widely but selectively in several tissues. There seems to be close correlation of the spatial and temporal expression among Maml1, Notch1 and Hes1 in the central nervous system (CNS) during early development, implicating a role for the Maml1 gene in neurogenesis.


Asunto(s)
ADN Complementario/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular Tumoral , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Mapeo Cromosómico , Cromosomas de los Mamíferos/genética , Clonación Molecular , ADN Complementario/química , ADN Complementario/aislamiento & purificación , Embrión de Mamíferos/metabolismo , Exones , Regulación del Desarrollo de la Expresión Génica , Genes/genética , Humanos , Hibridación in Situ , Hibridación Fluorescente in Situ , Intrones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Notch , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Transducción de Señal , Factores de Tiempo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
18.
Carcinogenesis ; 23(6): 1017-24, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12082024

RESUMEN

Malignant pleural mesothelioma (MPM) is a highly lethal pleural neoplasm that is often resistant to chemotherapeutic drugs, including cisplatin, and for which little is known regarding carcinogenic pathways. We used differential display to compare gene expression patterns in mesothelioma, normal pleura and normal lung, in order to better understand MPM pathobiology, and to search for genes that may facilitate drug resistance in this cancer. The human inhibitor of apoptosis protein-1 gene (IAP-1/MIHC/cIAP2) was discovered to be highly expressed in MPM. We confirmed overexpression of IAP-1 mRNA and protein in 39 additional human MPM tumor specimens and 3/5 (60%) MPM cell lines by multiple methods, including real time quantitative reverse transcription-PCR and western blot analysis. Using an antisense targeting approach, we found that attenuation of IAP-1 mRNA levels decreases baseline cell viability and increases the sensitivity of MPM cell lines to cisplatin by nearly 20-fold. Reduced IAP-1 gene expression also results in a concordant increase of the pro-apoptotic cleavage product of caspase 9 and a reduction in the number of viable tumor cells. Our observations strongly suggest that IAP-1 is at least partly responsible for promoting carcinogenesis and mediating resistance to cisplatin in many MPM tumors and that further study of this apoptotic pathway is warranted.


Asunto(s)
Supervivencia Celular/fisiología , Mesotelioma/patología , Neoplasias Pleurales/patología , Proteínas/genética , Proteínas/metabolismo , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Hibridación in Situ , Proteínas Inhibidoras de la Apoptosis , Neoplasias Pulmonares/patología , Oligodesoxirribonucleótidos Antisentido/farmacología , ARN Mensajero/genética , Valores de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética/efectos de los fármacos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA