Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288007

RESUMEN

Upon infection of host cells, Legionella pneumophila releases a multitude of effector enzymes into the cell's cytoplasm that hijack a plethora of cellular activities, including the host ubiquitination pathways. Effectors belonging to the SidE-family are involved in noncanonical serine phosphoribosyl ubiquitination of host substrate proteins contributing to the formation of a Legionella-containing vacuole that is crucial in the onset of Legionnaires' disease. This dynamic process is reversed by effectors called Dups that hydrolyze the phosphodiester in the phosphoribosyl ubiquitinated protein. We installed reactive warheads on chemically prepared ribosylated ubiquitin to generate a set of probes targeting these Legionella enzymes. In vitro tests on recombinant DupA revealed that a vinyl sulfonate warhead was most efficient in covalent complex formation. Mutagenesis and X-ray crystallography approaches were used to identify the site of covalent cross-linking to be an allosteric cysteine residue. The subsequent application of this probe highlights the potential to selectively enrich the Dup enzymes from Legionella-infected cell lysates.

2.
Chembiochem ; 24(2): e202200601, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36377600

RESUMEN

Small ubiquitin-like modifiers (SUMOs) are conjugated to protein substrates in cells to regulate their function. The attachment of SUMO family members SUMO1-3 to substrate proteins is reversed by specific isopeptidases called SENPs (sentrin-specific protease). Whereas SENPs are SUMO-isoform or linkage type specific, comprehensive analysis is missing. Furthermore, the underlying mechanism of SENP linkage specificity remains unclear. We present a high-throughput synthesis of 83 isopeptide-linked SUMO-based fluorescence polarization reagents to study enzyme preferences. The assay reagents were synthesized via a native chemical ligation-desulfurization protocol between 11-mer peptides containing a γ-thiolysine and a SUMO3 thioester. Subsequently, five recombinantly expressed SENPs were screened using these assay reagents to reveal their deconjugation activity and substrate preferences. In general, we observed that SENP1 is the most active and nonselective SENP while SENP6 and SENP7 show the least activity. Furthermore, SENPs differentially process peptides derived from SUMO1-3, who form a minimalistic representation of diSUMO chains. To validate our findings, five distinct isopeptide-linked diSUMO chains were chemically synthesized and proteolysis was monitored using a gel-based read-out.


Asunto(s)
Colorantes Fluorescentes , Ensayos Analíticos de Alto Rendimiento , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Endopeptidasas/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Péptido Hidrolasas/metabolismo , Péptidos/química , Proteolisis , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/síntesis química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química
3.
Chembiochem ; 22(12): 2011-2031, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33482040

RESUMEN

The ubiquitylation machinery regulates several fundamental biological processes from protein homeostasis to a wide variety of cellular signaling pathways. As a consequence, its dysregulation is linked to diseases including cancer, neurodegeneration, and autoimmunity. With this review, we aim to highlight the therapeutic potential of targeting E3 ligases, with a special focus on an emerging class of RING ligases, named tri-partite motif (TRIM) proteins, whose role as targets for drug development is currently gaining pharmaceutical attention. TRIM proteins exert their catalytic activity as scaffolds involved in many protein-protein interactions, whose multidomains and adapter-like nature make their druggability very challenging. Herein, we give an overview of the current understanding of this class of single polypeptide RING E3 ligases and discuss potential targeting options.


Asunto(s)
Proteínas de Motivos Tripartitos/metabolismo , Humanos
4.
J Biol Chem ; 293(45): 17362-17374, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30228188

RESUMEN

Ubiquitin-specific protease 15 (USP15) regulates important cellular processes, including transforming growth factor ß (TGF-ß) signaling, mitophagy, mRNA processing, and innate immune responses; however, structural information on USP15's catalytic domain is currently unavailable. Here, we determined crystal structures of the USP15 catalytic core domain, revealing a canonical USP fold, including a finger, palm, and thumb region. Unlike for the structure of paralog USP4, the catalytic triad is in an inactive configuration with the catalytic cysteine ∼10 Å apart from the catalytic histidine. This conformation is atypical, and a similar misaligned catalytic triad has so far been observed only for USP7, although USP15 and USP7 are differently regulated. Moreover, we found that the active-site loops are flexible, resulting in a largely open ubiquitin tail-binding channel. Comparison of the USP15 and USP4 structures points to a possible activation mechanism. Sequence differences between these two USPs mainly map to the S1' region likely to confer specificity, whereas the S1 ubiquitin-binding pocket is highly conserved. Isothermal titration calorimetry monoubiquitin- and linear diubiquitin-binding experiments showed significant differences in their thermodynamic profiles, with USP15 displaying a lower affinity for monoubiquitin than USP4. Moreover, we report that USP15 is weakly inhibited by the antineoplastic agent mitoxantrone in vitro A USP15-mitoxantrone complex structure disclosed that the anthracenedione interacts with the S1' binding site. Our results reveal first insights into USP15's catalytic domain structure, conformational changes, differences between paralogs, and small-molecule interactions and establish a framework for cellular probe and inhibitor development.


Asunto(s)
Dominio Catalítico , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteasas Ubiquitina-Específicas/química , Humanos , Unión Proteica , Homología de Secuencia de Aminoácido , Ubiquitina/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA