Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122842, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37216816

RESUMEN

Even in the era of smart technologies and IoT enabled devices, tea testing technique continues to be a person specific subjective task. In this study, we have employed optical spectroscopy-based detection technique for the quantitative validation of tea quality. In this regard, we have employed the external quantum yield of quercetin at 450 nm (λex = 360 nm), which is an enzymatic product generated by the activity of ß-glucosidase on rutin, a naturally occurring metabolite responsible for tea-flavour (quality). We have found that a specific point in a graph representing Optical Density and external Quantum Yield as independent and dependent variables respectively of an aqueous tea extract objectively indicates a specific variety of the tea. A variety of tea samples from various geographical origin have been analysed with the developed technique and found to be useful for the tea quality assessment. The principal component analysis distinctly showed the tea samples originated from Nepal and Darjeeling having similar external quantum yield, while the tea samples from Assam region had a lower external quantum yield. Furthermore, we have employed experimental and computational biology techniques for the detection of adulteration and health benefit of the tea extracts. In order to assure the portability/field use, we have also developed a prototype which confirms the results obtained in the laboratory. We are of the opinion that the simple user interface and almost zero maintenance cost of the device will make it useful and attractive with minimally trained manpower at low resource setting.


Asunto(s)
Camellia sinensis , , Humanos , Té/química , Análisis Espectral , Quercetina , Extractos Vegetales , Biomarcadores , Camellia sinensis/química
2.
Sci Rep ; 13(1): 2370, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759533

RESUMEN

The study was aimed to evaluate the performance of a newly developed spectroscopy-based non-invasive and noncontact device (SAMIRA) for the simultaneous measurement of hemoglobin, bilirubin and oxygen saturation as an alternative to the invasive biochemical method of blood sampling. The accuracy of the device was assessed in 4318 neonates having incidences of either anemia, jaundice, or hypoxia. Transcutaneous bilirubin, hemoglobin and blood saturation values were obtained by the newly developed instrument which was corroborated with the biochemical blood tests by expert clinicians. The instrument is trained using Artificial Neural Network Analysis to increase the acceptability of the data. The artificial intelligence incorporated within the instrument determines the disease condition of the neonate. The Pearson's correlation coefficient, r was found to be 0.987 for hemoglobin estimation and 0.988 for bilirubin and blood gas saturation respectively. The bias and the limits of agreement for the measurement of all the three parameters were within the clinically acceptance limit.


Asunto(s)
Bilirrubina , Hemoglobinas , Saturación de Oxígeno , Oxígeno , Sistemas de Atención de Punto , Análisis Espectral , Humanos , Recién Nacido , Inteligencia Artificial , Bilirrubina/sangre , Hemoglobinas/análisis , Oxígeno/sangre , Análisis Espectral/instrumentación , Análisis Espectral/métodos , Imagen Óptica/instrumentación , Imagen Óptica/métodos
3.
Rev Sci Instrum ; 93(11): 115105, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461487

RESUMEN

The deteriorating water environment worldwide, mainly due to population explosion and uncontrolled direct disposal of harmful industrial and farming wastes, earnestly demands new approaches and accurate technologies to monitor water quality before consumption overcoming the shortcomings of the current methodologies. A spectroscopic water quality monitoring and early-warning instrument for evaluating acute water toxicity are the need of the hour. In this study, we have developed a prototype capable of the quantification of dissolved organic matter, dissolved chemicals, and suspended particulate matter in trace amounts dissolved in the water. The prototype estimates the water quality of the samples by measuring the absorbance, fluorescence, and scattering of the impurities simultaneously. The performance of the instrument was evaluated by detecting common water pollutants such as Benzopyrene, Crystal Violet, and Titanium di-oxide. The limit of detection values was found to be 0.50, 23.9, and 23.2 ppb (0.29 µM), respectively.


Asunto(s)
Benzo(a)pireno , Benzopirenos , Análisis Espectral , Materia Orgánica Disuelta , Violeta de Genciana
4.
Sci Rep ; 12(1): 18881, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344591

RESUMEN

Anti-microbial resistant infection is predicted to be alarming in upcoming years. In the present study, we proposed co-localization of two model drugs viz., rifampicin and benzothiazole used in anti-tuberculosis and anti-fungal agents respectively in a nanoscopic cationic micelle (cetyl triethyl ammonium bromide) with hydrodynamic diameter of 2.69 nm. Sterilization effect of the co-localized micellar formulation against a model multi-drug resistant bacterial strain viz., Methicillin resistant Staphylococcus aureus was also investigated. 99.88% decrease of bacterial growth in terms of colony forming unit was observed using the developed formulation. While Dynamic Light Scattering and Forsters Resonance Energy Transfer between benzothiazole and rifampicin show co-localization of the drugs in the nanoscopic micellar environment, analysis of time-resolved fluorescence decays by Infelta-Tachiya model and the probability distribution of the donor-acceptor distance fluctuations for 5 µM,10 µM and 15 µM acceptor concentrations confirm efficacy of the co-localization. Energy transfer efficiency and the donor acceptor distance are found to be 46% and 20.9 Å respectively. We have also used a detailed computational biology framework to rationalize the sterilization effect of our indigenous formulation. It has to be noted that the drugs used in our studies are not being used for their conventional indication. Rather the co-localization of the drugs in the micellar environment shows a completely different indication of their use in the remediation of multi-drug resistant bacteria revealing the re-purposing of the drugs for potential use in hospital-born multi-drug resistant bacterial infection.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Rifampin/farmacología , Farmacorresistencia Bacteriana Múltiple , Micelas , Benzotiazoles/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...