Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 82: 104203, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35915046

RESUMEN

BACKGROUND: To investigate a vaccine technology with potential to protect against coronavirus disease 2019 (COVID-19) and reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with a single vaccine dose, we developed a SARS-CoV-2 candidate vaccine using the live vesicular stomatitis virus (VSV) chimeric virus approach previously used to develop a licensed Ebola virus vaccine. METHODS: We generated a replication-competent chimeric VSV-SARS-CoV-2 vaccine candidate by replacing the VSV glycoprotein (G) gene with coding sequence for the SARS-CoV-2 Spike glycoprotein (S). Immunogenicity of the lead vaccine candidate (VSV∆G-SARS-CoV-2) was evaluated in cotton rats and golden Syrian hamsters, and protection from SARS-CoV-2 infection also was assessed in hamsters. FINDINGS: VSV∆G-SARS-CoV-2 delivered with a single intramuscular (IM) injection was immunogenic in cotton rats and hamsters and protected hamsters from weight loss following SARS-CoV-2 challenge. When mucosal vaccination was evaluated, cotton rats did not respond to the vaccine, whereas mucosal administration of VSV∆G-SARS-CoV-2 was found to be more immunogenic than IM injection in hamsters and induced immunity that significantly reduced SARS-CoV-2 challenge virus loads in both lung and nasal tissues. INTERPRETATION: VSV∆G-SARS-CoV-2 delivered by IM injection or mucosal administration was immunogenic in golden Syrian hamsters, and both vaccination methods effectively protected the lung from SARS-CoV-2 infection. Hamsters vaccinated by mucosal application of VSV∆G-SARS-CoV-2 also developed immunity that controlled SARS-CoV-2 replication in nasal tissue. FUNDING: The study was funded by Merck Sharp & Dohme, Corp., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA, and The International AIDS Vaccine Initiative, Inc. (IAVI), New York, USA. Parts of this research was supported by the Biomedical Advanced Research and Development Authority (BARDA) and the Defense Threat Reduction Agency (DTRA) of the US Department of Defense.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Cricetinae , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Mesocricetus , SARS-CoV-2 , Virus de la Estomatitis Vesicular Indiana/genética , Inmunogenicidad Vacunal
2.
Microb Cell Fact ; 20(1): 94, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33933073

RESUMEN

BACKGROUND: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. RESULTS: We describe a holistic approach for the molecular design of recombinant protein antigens-considering both their manufacturability and antigenicity-informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. CONCLUSIONS: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.


Asunto(s)
Antígenos Virales/genética , Ingeniería Genética/métodos , Vacunas contra Rotavirus/genética , Rotavirus/inmunología , Saccharomycetales/genética , Antígenos Virales/inmunología , Biología Computacional , Genómica/métodos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Rotavirus/genética , Vacunas contra Rotavirus/inmunología , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología
3.
J Pharm Sci ; 110(3): 1054-1066, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33278412

RESUMEN

In a companion paper, a two-step developability assessment is presented to rapidly evaluate low-cost formulations (multi-dose, aluminum-adjuvanted) for new subunit vaccine candidates. As a case study, a non-replicating rotavirus (NRRV) recombinant protein antigen P[4] was found to be destabilized by the vaccine preservative thimerosal, and this effect was mitigated by modification of the free cysteine (C173S). In this work, the mechanism(s) of thimerosal-P[4] protein interactions, along with subsequent effects on the P[4] protein's structural integrity, are determined. Reversible complexation of ethylmercury, a thimerosal degradation byproduct, with the single cysteine residue of P[4] protein is demonstrated by intact protein mass analysis and biophysical studies. A working mechanism involving a reversible S-Hg coordinate bond is presented based on the literature. This reaction increased the local backbone flexibility of P[4] within the helical region surrounding the cysteine residue and then caused more global destabilization, both as detected by HX-MS. These effects correlate with changes in antibody-P[4] binding parameters and alterations in P[4] conformational stability due to C173S modification. Epitope mapping by HX-MS demonstrated involvement of the same cysteine-containing helical region of P[4] in antibody-antigen binding. Future formulation challenges to develop low-cost, multi-dose formulations for new recombinant protein vaccine candidates are discussed.


Asunto(s)
Rotavirus , Timerosal , Antígenos Virales , Conservadores Farmacéuticos , Vacunas de Subunidad
4.
J Pharm Sci ; 110(3): 1042-1053, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33285182

RESUMEN

A two-step developability assessment workflow is described to screen variants of recombinant protein antigens under various formulation conditions to rapidly identify stable, aluminum-adjuvanted, multi-dose vaccine candidates. For proof-of-concept, a series of sequence variants of the recombinant non-replicating rotavirus (NRRV) P[8] protein antigen (produced in Komagataella phaffii) were compared in terms of primary structure, post-translational modifications, antibody binding, conformational stability, relative solubility and preservative compatibility. Based on these results, promising P[8] variants were down-selected and the impact of key formulation conditions on storage stability was examined (e.g., presence or absence of the aluminum-adjuvant Alhydrogel and the preservative thimerosal) as measured by differential scanning calorimetry (DSC) and antibody binding assays. Good correlations between rapidly-generated developability screening data and storage stability profiles (12 weeks at various temperatures) were observed for aluminum-adsorbed P[8] antigens. These findings were extended and confirmed using variants of a second NRRV antigen, P[4]. These case-study results with P[8] and P[4] NRRV variants are discussed in terms of using this vaccine formulation developability workflow to better inform and optimize formulation design with a wide variety of recombinant protein antigens, with the long-term goal of rapidly and cost-efficiently identifying low-cost vaccine formulations for use in low and middle income countries.


Asunto(s)
Vacunas contra Rotavirus , Rotavirus , Antígenos , Proteínas Recombinantes , Saccharomycetales
5.
Biotechnol Bioeng ; 118(3): 1199-1212, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33274756

RESUMEN

The methylotrophic yeast Pichia pastoris is widely used as a microbial host for recombinant protein production. Bioreactor models for P. pastoris can inform understanding of cellular metabolism and can be used to optimize bioreactor operation. This article constructs an extensive macroscopic bioreactor model for P. pastoris which describes substrates, biomass, total protein, other medium components, and off-gas components. Species and elemental balances are introduced to describe uptake and evolution rates for medium components and off-gas components. Additionally, a pH model is constructed using an overall charge balance, acid/base equilibria, and activity coefficients to describe production of recombinant protein and precipitation of medium components. The extent of run-to-run variability is modeled by distributions of a subset of the model parameters, which are estimated using the maximum likelihood method. Model prediction from the extensive macroscopic bioreactor model well describes experimental data with different operating conditions. The probability distributions of the model predictions quantified from the parameter distribution are quantifiably consistent with the run-to-run variability observed in the experimental data. The uncertainty description in this macroscopic bioreactor model identifies the model parameters that have large variability and provides guidance as to which aspects of cellular metabolism should be the focus of additional experimental studies. The model for medium components with pH and precipitation can be used for improving chemically defined medium by minimizing the amount of components needed while meeting cellular requirements.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Medios de Cultivo/química , Modelos Biológicos , Saccharomycetales/crecimiento & desarrollo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Saccharomycetales/genética
6.
Biotechnol Prog ; 36(3): e2966, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31960616

RESUMEN

To meet the challenges of global health, vaccine design and development must be reconsidered to achieve cost of goods as low as 15¢ per dose. A new recombinant protein-based rotavirus vaccine candidate derived from non-replicative viral subunits fused to a P2 tetanus toxoid CD4(+) T cell epitope is currently under clinical development. We have sought to simplify the existing manufacturing process to meet these aims. To this end, we have taken a holistic process development approach to reduce process complexity and costs while producing a product with the required characteristics. We have changed expression system from Escherichia coli to Pichia pastoris, to produce a secreted product, thereby reducing the number of purification steps. However, the presence of proteases poses challenges to product quality. To understand the effect of fermentation parameters on product quality small-scale fermentations were carried out. Media pH and fermentation duration had the greatest impact on the proportion of full-length product. A novel acidic pH pulse strategy was used to minimize proteolysis, and this combined with an early harvest time significantly increased the proportion of full-length material (60-75%). An improved downstream process using a combination of CIEX and AIEX to further reduce proteases, resulted in maintaining product quality (95% yield).


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus/biosíntesis , Saccharomycetales/genética , Fermentación/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Proteolisis , Rotavirus/patogenicidad , Infecciones por Rotavirus/virología , Vacunas contra Rotavirus/química , Vacunas contra Rotavirus/genética , Saccharomycetales/química
8.
Vaccine ; 37(17): 2415-2421, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30910404

RESUMEN

Vaccination remains the most successful and effective mechanism of pathogen control. However, their development and deployment in epidemic settings have been limited, and the 2015 Ebola outbreak in West Africa identified several bottlenecks linked to a lack of investment in pathogen research, infrastructure or regulation. Shortly after this outbreak, the UK Government established the UK Vaccine Network to ensure the UK is better prepared to respond to pathogens outbreaks of epidemic potential. As part of their work, the network commissioned the creation of a Vaccine Development Tool (http://www.vaccinedevelopment.org.uk/) to serve as a guide to the key stages in vaccine development. The tool also set out to capture the key, rate-limiting bottlenecks in the development of vaccines against emerging infectious disease such that corrective action could be taken, be it through research, funding, infrastructure and policy, both in the UK and internationally. The main research bottlenecks were related to understanding pathogen biology, identification of appropriate animal models and investment in the manufacturing sciences, especially into process development. Infrastructure gaps in GMP manufacturing and fill-finish were also identified and limitations in GMO regulation and regulatory and ethical approvals, especially for outbreak pathogens required new policy initiatives. The UK Vaccine Network has since begun work to correct for these limitations with a series of funding calls and development programmes. This paper seeks to summarise the Vaccine Development Tool and its key findings.


Asunto(s)
Enfermedades Transmisibles Emergentes/prevención & control , Brotes de Enfermedades/prevención & control , Vigilancia en Salud Pública/métodos , Vacunación , Vacunas , Animales , Socorristas , Humanos , Reino Unido , Vacunas/administración & dosificación , Vacunas/inmunología
10.
Biotechnol Bioeng ; 115(5): 1226-1238, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29315484

RESUMEN

Large scale continuous cell-line cultures promise greater reproducibility and efficacy for the production of influenza vaccines, and adenovirus for gene therapy. This paper seeks to use an existing validated ultra scale-down tool, which is designed to mimic the commercial scale process environment using only milliliters of material, to provide some initial insight into the performance of the harvest step for these processes. The performance of industrial scale centrifugation and subsequent downstream process units is significantly affected by shear. The properties of these cells, in particular their shear sensitivity, may be changed considerably by production of a viral product, but literature on this is limited to date. In addition, the scale-down tool used here has not previously been applied to the clarification of virus production processes. The results indicate that virus infected cells do not actually show any increase in sensitivity to shear, and may indeed become less shear sensitive, in a similar manner to that previously observed in old or dead cell cultures. Clarification may be most significantly dependent on the virus release mechanism, with the budding influenza virus producing a much greater decrease in clarification than the lytic, non-enveloped adenovirus. A good match was also demonstrated to the industrial scale performance in terms of clarification, protein release, and impurity profile.


Asunto(s)
Centrifugación/métodos , Tecnología Farmacéutica/métodos , Vacunas Virales/aislamiento & purificación , Cultivo de Virus/métodos , Adenoviridae/crecimiento & desarrollo , Supervivencia Celular , Orthomyxoviridae/crecimiento & desarrollo
11.
Biotechnol Prog ; 34(1): 130-140, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28884522

RESUMEN

The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high-throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species, such as Pichia pastoris, no effective high-throughput disruption methods exist. The development of an automated, miniaturized, high-throughput, noncontact, scalable platform based on adaptive focused acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein is described. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pretreatment step. Three different modes of AFA were studied and compared to the performance high-pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA-based methods to mimic large-scale homogenization processes. These results demonstrate that AFA-mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development, and whole bioprocess integration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:130-140, 2018.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Pichia/genética , Proteínas Recombinantes/genética , Fermentación , Proteínas Recombinantes/química , Saccharomyces cerevisiae/genética
12.
Hum Gene Ther Methods ; 24(2): 125-39, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23461548

RESUMEN

ProSavin(®) is a lentiviral vector (LV)-based gene therapy for Parkinson's disease. ProSavin(®) is currently in a Phase I/II clinical trial using material that was generated by transient transfection of adherent human embryonic kidney (HEK)293T cells. For future large-scale productions of ProSavin(®), we have previously reported the development and characterization of two inducible producer cell lines, termed PS5.8 and PS46.2. PS46.2 has been successfully adapted to grow in suspension cultures. The present study describes the creation of a small-scale (<2 ml) microwell-based experimental platform for the parallel investigation of ProSavin(®) production using suspension-adapted PS46.2. This is combined with statistical design of experiments (DoE) techniques to enable rapid characterization of the process conditions that impact cell growth and LV production. The effects of postinduction period, microwell liquid fill volume, and concentration of inducer (doxycycline) on ProSavin(®) titer and the particle:infectivity (P:I) ratio was investigated using three rounds of DoE, in order to identify appropriate factor ranges and optimize production conditions. We identified an optimal "harvest window" between approximately 26-46 hr within which maximal titers of around 6×10(4) transducing units (TU)/ml were obtained (an approximately 30-fold improvement compared to starting microwell conditions), providing that the fill volume was maintained at or below 1 ml and the doxycycline concentration was at least 1.0 µg/ml. Insights from the microwell studies were subsequently used to rapidly establish operating conditions for ProSavin(®) production in a 0.5-L wave bioreactor culture. The information presented herein thus aids the design and evaluation of scalable production processes for LVs.


Asunto(s)
Técnicas de Cultivo de Célula , Vectores Genéticos/biosíntesis , Lentivirus , Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/normas , Línea Celular , Vectores Genéticos/genética , Células HEK293 , Humanos , Lentivirus/fisiología , Carga Viral
13.
Expert Rev Vaccines ; 9(2): 125-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20109022

RESUMEN

The Informa Life Sciences vaccines conference is an annual meeting of a relatively small number of academics and industrialists. It is split into three concurrent sessions covering vaccine discovery, quality and manufacturing. Although there were many presentations of merit, only a few will be discussed here, including the plenary speeches on adjuvants and influenza.


Asunto(s)
Vacunas contra el Cáncer , Vacunas contra la Influenza , Antígenos de Neoplasias , Europa (Continente) , Humanos , Virión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...