Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Environ Res ; 95(6): e10900, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37264766

RESUMEN

Produced water (PW) has been generated in a huge amount representing the largest volume waste stream. Membrane technology has found a leading ability in treating PW due to its significant advantages, such as lower cost, easy installation, and being environmentally friendly. Mixed matrix membranes (MMMs) have received significant research interest due to their flexibility, multifunctionality enhances the membrane performance with increasing selectivity, permeability, robustness, mechanical strength, and resistance to fouling. This mini-review paper identifies the utilization of different membranes for treating PW. It also gives a review of different types of MMMs with specific fillers for the application of PW treatment. Lastly, some methods to enhance the performance of mixed matrix membranes have been highlighted. The issues and challenges in membranes are also discussed. PRACTITIONER POINTS: Mixed matrix membranes (MMMs) are a potential membrane type for PW treatment. This mini-review paper identifies the use of several membranes to treat PW. It also examined various types of MMMs containing specific fillers for the application of PW treatment. Methods for improving the performance of mixed matrix membranes have been highlighted, including the use of novel materials, surface modification, and cross-linking. The issues and challenges in membranes are also discussed.


Asunto(s)
Purificación del Agua , Agua
2.
Chemosphere ; 311(Pt 1): 136987, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36306961

RESUMEN

This study explains the modeling of synthesized membranes using the Donnan Steric Pore model (DSPM) based on the Extended Nernst Planck Equation (ENP). Conventionally, structural parameters required to predict the performance of the membranes were determined through tedious experimentation, which in this study are found using a new MATLAB technique. A MATLAB program is used to determine the unknown structural parameters such as effective charge density (Xd), effective pore radius (rp), and effective membrane thickness to porosity ratio (Δx/Ak) by using the single solute rejection and permeation data. It was found that the model predicted the rejection of studied membranes accurately, with the E5C1 membrane exceeding the others (E5, E5C5) for rejection of single and divalent salt's aqueous solutions. The rejection of 100 ppm aqueous solution of NaCl for E5C1 was around 60%, whereas, for an aqueous solution of 100 ppm, CaCl2 rejection reached up to 80% at 10 bar feed pressure. The trend of salt rejection for all three membranes was found to be in the following order: E5C1 > E5C5 > E5, confirming that their structural parameters-controlled ion transport in these membranes. The structural parameters, such as effective pore radius, effective membrane thickness to porosity ratio, and effective charge density for the best performing membrane, i.e., E5C1, were determined to be 0.5 nm, 16 µm, and -6.04 mol/m3,respectively. Finally, it can be asserted that this method can be used to predict the real performance of membranes by significantly reducing the number of experiments previously required for the predictive modeling of nanofiltration-type membranes.


Asunto(s)
Membranas Artificiales , Cloruro de Sodio , Estados Unidos , Centers for Medicare and Medicaid Services, U.S. , Membranas , Porosidad , Agua
3.
Membranes (Basel) ; 12(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36422121

RESUMEN

In this work, in situ polymerization of modified sol-gel silica in a polyether sulfone matrix is presented to control the interfacial defects in organic-inorganic composite membranes. Polyether sulfone polymer and modified silica are used as organic and inorganic components of mixed matrix membranes (MMM). The membranes were prepared with different loadings (2, 4, 6, and 8 wt.%) of modified and unmodified silica. The synthesized membranes were characterized using Field emission electron scanning microscopy, energy dispersive X-ray, Fourier transform infrared spectroscopy, thermogravimetric analyzer, and differential scanning calorimetry. The performance of the membranes was evaluated using a permeation cell set up at a relatively higher-pressure range (5-30 bar). The membranes appear to display ideal morphology with uniform distribution of particles, defect-free structure, and absence of interfacial defects such as voids and particle accumulations. Additionally, the CO2/CH4 selectivity of the membrane increased with the increase in the modified silica content. Further comparison of the performance indicates that PES/modified silica MMMs show a promising feature of commercially attractive membranes. Therefore, tailoring the interfacial morphology of the membrane results in enhanced properties and improved CO2 separation performance.

4.
Membranes (Basel) ; 12(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35736296

RESUMEN

Carbon nanotube (CNT) is a prominent material for gas separation due to its inherent smoothness of walls, allowing rapid transport of gases compared to other inorganic fillers. It also possesses high mechanical strength, enabling membranes to operate at high pressure. Although it has superior properties compared to other inorganic fillers, preparation of CNTs into a polymer matrix remains challenging due to the strong van der Waals forces of CNTs, which lead to agglomeration of CNTs. To utilize the full potential of CNTs, proper dispersion of CNTs must be addressed. In this paper, methods to improve the dispersion of CNTs using functionalization methods were discussed. Fabrication techniques for CNT mixed-matrix membrane (MMM) nanocomposites and their impact on gas separation performance were compared. This paper also reviewed the applications and potential of CNT MMMs in gas separation.

5.
PLoS One ; 15(12): e0243540, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33275643

RESUMEN

Rice husk is a base adsorbent for pollutant removal. It is a cost-effective material and a renewable resource. This study provides the physicochemical characterization of chemically and thermally treated rice husk adsorbents for phenol removal from aqueous solutions. We revealed new functional groups on rice husk adsorbents by Fourier transform infrared spectroscopy, and observed major changes in the pore structure (from macro-mesopores to micro-mesopores) of the developed rice husk adsorbents using scanning electron microscopy. Additionally, we studied their surface area and pore size distribution, and found a greater enhancement of the morphological structure of the thermally treated rice husk compared with that chemically treated. Thermally treated adsorbents presented a higher surface area (24-201 m2.g-1) than those chemically treated (3.2 m2.g-1). The thermal and chemical modifications of rice husk resulted in phenol removal efficiencies of 36%-64% and 28%, respectively. Thus, we recommend using thermally treated rice husk as a promising adsorbent for phenol removal from aqueous solutions.


Asunto(s)
Oryza/química , Fenol/toxicidad , Purificación del Agua/métodos , Adsorción/fisiología , Restauración y Remediación Ambiental/métodos , Concentración de Iones de Hidrógeno , Residuos Industriales/análisis , Cinética , Microscopía Electrónica de Rastreo/métodos , Oryza/metabolismo , Fenol/química , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Agua/análisis , Contaminantes Químicos del Agua
6.
R Soc Open Sci ; 7(9): 200795, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33047043

RESUMEN

The key challenge in the synthesis of composite mixed matrix membrane (MMMs) is the incompatible membrane fabrication using porous support in the dry-wet phase inversion technique. The key objective of this research is to synthesize thin composite ternary (amine) mixed matrix membranes on microporous support by incorporating 10 wt% of carbon molecular sieve (CMS) and 5-15 wt% of diethanolamine (DEA) in polyethersulfone (PES) dope solution for the separation of carbon dioxide (CO2) from methane (CH4) at high-pressure applications. The developed membranes were evaluated for their morphological structure, thermal and mechanical stabilities, functional groups, as well as for CO2-CH4 separation performance at high pressure (10-30 bar). The results showed that the developed membranes have asymmetric structure, and they are mechanically strong at 30 bar. This new class of PES/CMS/DEA composite MMMs exhibited improved gas permeance compared to pure PES composite polymeric membrane. CO2-CH4 perm-selectivity enhanced from 8.15 to 16.04 at 15 wt% of DEA at 30 bar pressure. The performance of amine composite MMMs is theoretically predicted using a modified Maxwell model. The predictions were in good agreement with experimental data after applying the optimized values with AARE % = ∼less than 2% and R 2 = 0.99.

7.
Water Environ Res ; 92(9): 1306-1324, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32170974

RESUMEN

The asymmetric polyethersulfone (PES-15 wt.%) mixed-matrix membranes were prepared by incorporation of carbon molecular sieve (CMS) with varying concentrations (1, 3, and 5 wt.%). Physicochemical characterization of synthesized membranes was carried out using field emission scanning electron microscope, atomic force microscopy, contact angle, thermogravimetric analysis, zeta potential analyzer, porosity, and mean pore sizes. Performance analysis of synthesized mixed-matrix membranes was carried out by varying the operating parameters such as pressure (2-10 bar), feed concentration (100-1,000 mg/L), and cations type (Na+ , Ca2+ , Mg2+ , and Sn2+ ). Effect of operating parameters and CMS concentration was investigated on pure water flux (PWF), permeate flux, and rejection of membranes. It was found that mixed-matrix membrane containing 15 wt.% PES with 1 wt.% CMS displayed the superior physicochemical characteristics in terms of hydrophilicity (37.9°), surface charge (-13.8 mV), mean pore diameter (6.04 nm), and thermal properties (Tg  = 218.5°C), and overall performance. E5C1 membrane showed 1.5 times higher PWF (75.5 L m-2  hr-1 ) and incremented in rejection for all salts than the nascent membrane. PRACTITIONER POINTS: Carbon molecular sieve-embedded mixed-matrix membranes were synthesized by phase inversion method. The resultant membranes experienced improved hydrophilicity, roughness, surface charge, porosity, and mean pore diameter with 1 wt.% CMS loading. The pure water flux was improved from 55.77 to 75.05 L m-2  hr-1 when 1 wt.% CMS was added in pure PES. The observed rejection of a mixed-matrix membrane with 1 wt.% CMS was the maximum for all salts.


Asunto(s)
Carbono , Membranas Artificiales , Iones , Membranas , Polímeros , Sulfonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...