Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-13, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962580

RESUMEN

Apoptosis is a critical process that regulates cell survival and death and plays an essential role in cancer development. The Bcl-2 protein family, including myeloid leukemia 1 (Mcl-1), is a key regulator of the intrinsic apoptosis pathway, and its overexpression in many human cancers has prompted efforts to develop Mcl-1 inhibitors as potential anticancer agents. In this study, we aimed to design new Mcl-1 inhibitors using various computational techniques. First, we used the Mcl-1 receptor-ligand complex to build an e-pharmacophore hypothesis and screened a library of 567,000 fragments from the Enamine database. We obtained 410 fragments and used them to design 92,384 novel compounds, which we then docked into the Mcl-1 binding cavity using HTVS, SP, and XP docking modes of Glide. To assess their suitability as drug candidates, we conducted MM-GBSA calculations and ADME prediction, leading to the identification of 10 compounds with excellent binding affinity and favorable pharmacokinetic properties. To further investigate the interaction strength, we performed molecular dynamics simulations on the top three Mcl-1 receptor-ligand complexes to study their interaction stability. Overall, our findings suggest that these compounds have promising potential as anticancer agents, pending further experimental validation such as Mcl-1 apoptosis Assay. By combining experimental methods with various in silico approaches, these techniques prove to be invaluable for identifying novel drug candidates with distinct therapeutic applications using fragment-based drug design. This methodology has the potential to expedite the drug discovery process while also reducing its costs.Communicated by Ramaswamy H. Sarma.

2.
Molecules ; 28(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37764441

RESUMEN

The interaction between the tumor suppressor protein p53 and its negative regulator, the MDM2 oncogenic protein, has gained significant attention in cancer drug discovery. In this study, 120 lignans reported from Ferula sinkiangensis and Justicia procumbens were assessed for docking simulations on the active pocket of the MDM2 crystal structure bound to Nutlin-3a. The docking analysis identified nine compounds with higher docking scores than the co-crystallized reference. Subsequent AMDET profiling revealed satisfactory pharmacokinetic and safety parameters for these natural products. Three compounds, namely, justin A, 6-hydroxy justicidin A, and 6'-hydroxy justicidin B, were selected for further investigation due to their strong binding affinities of -7.526 kcal/mol, -7.438 kcal/mol, and -7.240 kcal/mol, respectively, which surpassed the binding affinity of the reference inhibitor Nutlin-3a (-6.830 kcal/mol). To assess the stability and reliability of the binding of the candidate hits, a molecular dynamics simulation was performed over a duration of 100 ns. Remarkably, the thorough analysis demonstrated that all the hits exhibited stable molecular dynamics profiles. Based on their effective binding to MDM2, favorable pharmacokinetic properties, and molecular dynamics behavior, these compounds represent a promising starting point for further refinement. Nevertheless, it is essential to synthesize the suggested compounds and evaluate their activity through in vitro and in vivo experiments.


Asunto(s)
Antineoplásicos , Lignanos , Plantas Medicinales , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Reproducibilidad de los Resultados , Proteína p53 Supresora de Tumor , Antineoplásicos/farmacología , Lignanos/farmacología
3.
Molecules ; 28(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37630254

RESUMEN

Oxidative stress plays a significant role in the development of cancer. Inhibiting the protein-protein interaction (PPI) between Keap1 and Nrf2 offers a promising strategy to activate the Nrf2 antioxidant pathway, which is normally suppressed by the binding of Keap1 to Nrf2. This study aimed to identify natural compounds capable of targeting the kelch domain of KEAP1 using structure-based drug design methods. A pharmacophore model was constructed based on the KEAP1-inhibitor complex, leading to the selection of 6178 compounds that matched the model. Subsequently, docking and MM/GBSA analyses were conducted, resulting in the identification of 10 compounds with superior binding energies compared to the reference compound. From these, three compounds (ZINC000002123788, ZINC000002111341, and ZINC000002125904) were chosen for further investigation. Ligand-residue interaction analysis revealed specific interactions between these compounds and key residues, indicating their stability within the binding site. ADMET analysis confirmed that the selected compounds possessed desirable drug-like properties. Furthermore, molecular dynamics simulations were performed, demonstrating the stability of the ligand-protein complexes over a 100 ns duration. These findings underscore the potential of the selected natural compounds as agents targeting KEAP1 and provide valuable insights for future experimental studies.


Asunto(s)
Productos Biológicos , Neoplasias , Detección Precoz del Cáncer , Simulación del Acoplamiento Molecular , Productos Biológicos/farmacología , Simulación de Dinámica Molecular , Factor 2 Relacionado con NF-E2 , Proteína 1 Asociada A ECH Tipo Kelch , Ligandos , Farmacóforo , Estrés Oxidativo
4.
Front Chem ; 11: 1205724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351516

RESUMEN

Tropomyosin-receptor kinase A (TrkA) is the primary isoform among the tropomyosin-receptor kinases that have been associated with human cancer development, contributing to approximately 7.4% of all cancer cases. TrkA represents an attractive target for cancer treatment; however, currently available TrkA inhibitors face limitations in terms of resistance development and potential toxicity. Hence, the objective of this study was to identify new allosteric-approved inhibitors of TrkA that can overcome these challenges and be employed in cancer therapy. To achieve this goal, a screening of 9,923 drugs from the ChEMBL database was conducted to assess their repurposing potential using molecular docking. The top 49 drug candidates, exhibiting the highest docking scores (-11.569 to -7.962 kcal/mol), underwent MM-GBSA calculations to evaluate their binding energies. Delanzomib and tibalosin, the top two drugs with docking scores of -10.643 and -10.184 kcal/mol, respectively, along with MM-GBSA dG bind values of -67.96 and -50.54 kcal/mol, were subjected to 200 ns molecular dynamic simulations, confirming their stable interactions with TrkA. Based on these findings, we recommend further experimental evaluation of delanzomib and tibalosin to determine their potential as allosteric inhibitors of TrkA. These drugs have the potential to provide more effective and less toxic therapeutic alternatives. The approach employed in this study, which involves repurposing drugs through molecular docking and molecular dynamics, serves as a valuable tool for identifying novel drug candidates with distinct therapeutic uses. This methodology can contribute to reducing the attrition rate and expediting the process of drug discovery.

5.
Metabolites ; 13(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37233699

RESUMEN

Schistosomiasis is a neglected tropical disease with a significant socioeconomic impact. It is caused by several species of blood trematodes from the genus Schistosoma, with S. mansoni being the most prevalent. Praziquantel (PZQ) is the only drug available for treatment, but it is vulnerable to drug resistance and ineffective in the juvenile stage. Therefore, identifying new treatments is crucial. SmHDAC8 is a promising therapeutic target, and a new allosteric site was discovered, providing the opportunity for the identification of a new class of inhibitors. In this study, molecular docking was used to screen 13,257 phytochemicals from 80 Saudi medicinal plants for inhibitory activity on the SmHDAC8 allosteric site. Nine compounds with better docking scores than the reference were identified, and four of them (LTS0233470, LTS0020703, LTS0033093, and LTS0028823) exhibited promising results in ADMET analysis and molecular dynamics simulation. These compounds should be further explored experimentally as potential allosteric inhibitors of SmHDAC8.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...