Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 181(17): 3160-3171, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38715413

RESUMEN

BACKGROUND AND PURPOSE: The voltage-gated sodium channel isoform NaV1.7 is a high-interest target for the development of non-opioid analgesics due to its preferential expression in pain-sensing neurons. NaV1.7 is also expressed in autonomic neurons, yet its contribution to involuntary visceral reflexes has received limited attention. The small molecule inhibitor ST-2560 was advanced into pain behaviour and cardiovascular models to understand the pharmacodynamic effects of selective inhibition of NaV1.7. EXPERIMENTAL APPROACH: Potency of ST-2560 at NaV1.7 and off-target ion channels was evaluated by whole-cell patch-clamp electrophysiology. Effects on nocifensive reflexes were assessed in non-human primate (NHP) behavioural models, employing the chemical capsaicin and mechanical stimuli. Cardiovascular parameters were monitored continuously in freely-moving, telemetered NHPs following administration of vehicle and ST-2560. KEY RESULTS: ST-2560 is a potent inhibitor (IC50 = 39 nM) of NaV1.7 in primates with ≥1000-fold selectivity over other isoforms of the human NaV1.x family. Following systemic administration, ST-2560 (0.1-0.3 mg·kg-1, s.c.) suppressed noxious mechanical- and chemical-evoked reflexes at free plasma concentrations threefold to fivefold above NaV1.7 IC50. ST-2560 (0.1-1.0 mg·kg-1, s.c.) also produced changes in haemodynamic parameters, most notably a 10- to 20-mmHg reduction in systolic and diastolic arterial blood pressure, at similar exposures. CONCLUSIONS AND IMPLICATIONS: Acute pharmacological inhibition of NaV1.7 is antinociceptive, but also has the potential to impact the cardiovascular system. Further work is merited to understand the role of NaV1.7 in autonomic ganglia involved in the control of heart rate and blood pressure, and the effect of selective NaV1.7 inhibition on cardiovascular function.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Animales , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Masculino , Humanos , Femenino , Reflejo/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Relación Dosis-Respuesta a Droga
2.
ACS Med Chem Lett ; 13(11): 1763-1768, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36385936

RESUMEN

The voltage-gated sodium channel isoform NaV1.7 has drawn widespread interest as a target for non-opioid, investigational new drugs to treat pain. Selectivity over homologous, off-target sodium channel isoforms, which are expressed in peripheral motor neurons, the central nervous system, skeletal muscle and the heart, poses a significant challenge to the development of small molecule inhibitors of NaV1.7. Most inhibitors of NaV1.7 disclosed to date belong to a class of aryl and acyl sulfonamides that preferentially bind to an inactivated conformation of the channel. By taking advantage of a sequence variation unique to primate NaV1.7 in the extracellular pore of the channel, a series of bis-guanidinium analogues of the natural product, saxitoxin, has been identified that are potent against the resting conformation of the channel. A compound of interest, 25, exhibits >600-fold selectivity over off-target sodium channel isoforms and is efficacious in a preclinical model of acute pain.

3.
Pain ; 162(4): 1250-1261, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33086288

RESUMEN

ABSTRACT: The voltage-gated sodium channel Nav1.7 is highly expressed in nociceptive afferents and is critically involved in pain signal transmission. Nav1.7 is a genetically validated pain target in humans because loss-of-function mutations cause congenital insensitivity to pain and gain-of-function mutations cause severe pain syndromes. Consequently, pharmacological inhibition has been investigated as an analgesic therapeutic strategy. We describe a small molecule Nav1.7 inhibitor, ST-2530, that is an analog of the naturally occurring sodium channel blocker saxitoxin. When evaluated against human Nav1.7 by patch-clamp electrophysiology using a protocol that favors the resting state, the Kd of ST-2530 was 25 ± 7 nM. ST-2530 exhibited greater than 500-fold selectivity over human voltage-gated sodium channel isoforms Nav1.1-Nav1.6 and Nav1.8. Although ST-2530 had lower affinity against mouse Nav1.7 (Kd = 250 ± 40 nM), potency was sufficient to assess analgesic efficacy in mouse pain models. A 3-mg/kg dose administered subcutaneously was broadly analgesic in acute pain models using noxious thermal, mechanical, and chemical stimuli. ST-2530 also reversed thermal hypersensitivity after a surgical incision on the plantar surface of the hind paw. In the spared nerve injury model of neuropathic pain, ST-2530 transiently reversed mechanical allodynia. These analgesic effects were demonstrated at doses that did not affect locomotion, motor coordination, or olfaction. Collectively, results from this study indicate that pharmacological inhibition of Nav1.7 by a small molecule agent with affinity for the resting state of the channel is sufficient to produce analgesia in a range of preclinical pain models.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Saxitoxina , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Ratones , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.8/genética , Isoformas de Proteínas , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico
4.
J Med Chem ; 62(19): 8695-8710, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31012583

RESUMEN

Voltage-gated sodium ion channel subtype 1.7 (NaV1.7) is a high interest target for the discovery of non-opioid analgesics. Compelling evidence from human genetic data, particularly the finding that persons lacking functional NaV1.7 are insensitive to pain, has spurred considerable effort to develop selective inhibitors of this Na+ ion channel target as analgesic medicines. Recent clinical setbacks and disappointing performance of preclinical compounds in animal pain models, however, have led to skepticism around the potential of selective NaV1.7 inhibitors as human therapeutics. In this Perspective, we discuss the attributes and limitations of recently disclosed investigational drugs targeting NaV1.7 and review evidence that, by better understanding the requirements for selectivity and target engagement, the opportunity to deliver effective analgesic medicines targeting NaV1.7 endures.


Asunto(s)
Analgésicos/química , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Bloqueadores de los Canales de Sodio/química , Analgésicos/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Humanos , Canal de Sodio Activado por Voltaje NAV1.7/química , Dolor/tratamiento farmacológico , Dolor/patología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Bloqueadores de los Canales de Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Sulfonamidas/química , Sulfonamidas/metabolismo
5.
J Am Chem Soc ; 138(18): 5994-6001, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27138488

RESUMEN

The paralytic shellfish poisons are a collection of guanidine-containing natural products that are biosynthesized by prokaryote and eukaryote marine organisms. These compounds bind and inhibit isoforms of the mammalian voltage-gated Na(+) ion channel at concentrations ranging from 10(-11) to 10(-5) M. Here, we describe the de novo synthesis of three paralytic shellfish poisons, gonyautoxin 2, gonyautoxin 3, and 11,11-dihydroxysaxitoxin. Key steps include a diastereoselective Pictet-Spengler reaction and an intramolecular amination of an N-guanidyl pyrrole by a sulfonyl guanidine. The IC50's of GTX 2, GTX 3, and 11,11-dhSTX have been measured against rat NaV1.4, and are found to be 22 nM, 15 nM, and 2.2 µM, respectively.


Asunto(s)
Toxinas Marinas/síntesis química , Saxitoxina/análogos & derivados , Saxitoxina/síntesis química , Aminas/química , Animales , Ciclización , Toxinas Marinas/farmacología , Proteínas Musculares/antagonistas & inhibidores , Pirroles/química , Ratas , Saxitoxina/farmacología , Mariscos , Bloqueadores de los Canales de Sodio/síntesis química , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio , Estereoisomerismo
6.
J Am Chem Soc ; 136(17): 6401-5, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24708172

RESUMEN

Determining permeability of a given compound through human skin is a principal challenge owing to the highly complex nature of dermal tissue. We describe the application of an ambient mass spectrometry imaging method for visualizing skin penetration of sodium channel modulators, including novel synthetic analogs of natural neurotoxic alkaloids, topically applied ex vivo to human skin. Our simple and label-free approach enables successful mapping of the transverse and lateral diffusion of small molecules having different physicochemical properties without the need for extensive sample preparation.


Asunto(s)
Espectrometría de Masas/métodos , Absorción Cutánea , Piel/metabolismo , Bloqueadores de los Canales de Sodio/farmacocinética , Administración Tópica , Alcaloides/administración & dosificación , Alcaloides/química , Alcaloides/farmacocinética , Animales , Humanos , Permeabilidad , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/administración & dosificación , Bloqueadores de los Canales de Sodio/química , Canales de Sodio/metabolismo
7.
J Am Chem Soc ; 130(38): 12630-1, 2008 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-18759394

RESUMEN

An asymmetric synthesis of the paralytic shellfish poison (PSP), (+)-gonyautoxin 3, is described. A unique, Rh-catalyzed amination reaction provides rapid access to the heteratom-rich, tricyclic core of the toxin, which is common to more than 30 related natural products. The completed route should facilitate the preparation of other naturally occurring PSPs and designed analogues thereof.


Asunto(s)
Saxitoxina/análogos & derivados , Guanidinas/química , Toxinas Marinas/síntesis química , Oxidación-Reducción , Pirroles/química , Rodio/química , Saxitoxina/síntesis química , Estereoisomerismo
8.
Org Lett ; 8(6): 1073-6, 2006 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-16524271

RESUMEN

[reaction: see text] Oxidative C-H amination of N-trichloroethoxysulfonyl-protected ureas and guanidines is demonstrated to proceed in high yield for tertiary and benzylic-derived substrates. The success of these reactions is predicated on the choice of the electron-withdrawn 2,2,2-trichloroethoxysulfonyl (Tces) protecting group, the commercial catalyst Rh(2)(esp)(2) (1-2 mol %), and toluene as solvent. The frequency with which the heterocyclic imidazolidin-2-ones and 2-aminoimidazolines appear as structural elements in both natural products and therapeutically designed molecules confers these methods with a large number of potential applications.


Asunto(s)
Guanidinas/química , Urea/análogos & derivados , Urea/química , Aminación , Catálisis , Ciclización , Estructura Molecular , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA