Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 20(9): 1225-1235, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28714954

RESUMEN

Hexanucleotide repeat expansions represent the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, though the mechanisms by which such expansions cause neurodegeneration are poorly understood. We report elevated levels of DNA-RNA hybrids (R-loops) and double strand breaks in rat neurons, human cells and C9orf72 ALS patient spinal cord tissues. Accumulation of endogenous DNA damage is concomitant with defective ATM-mediated DNA repair signaling and accumulation of protein-linked DNA breaks. We reveal that defective ATM-mediated DNA repair is a consequence of P62 accumulation, which impairs H2A ubiquitylation and perturbs ATM signaling. Virus-mediated expression of C9orf72-related RNA and dipeptide repeats in the mouse central nervous system increases double strand breaks and ATM defects and triggers neurodegeneration. These findings identify R-loops, double strand breaks and defective ATM-mediated repair as pathological consequences of C9orf72 expansions and suggest that C9orf72-linked neurodegeneration is driven at least partly by genomic instability.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Rotura Cromosómica , Reparación del ADN/fisiología , Expansión de las Repeticiones de ADN/fisiología , Proteínas/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína C9orf72 , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas/metabolismo , Distribución Aleatoria , Ratas , Médula Espinal/metabolismo , Médula Espinal/patología
2.
Dis Model Mech ; 10(7): 859-868, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28550099

RESUMEN

Intronic GGGGCC repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two major pathologies stemming from the hexanucleotide RNA expansions (HREs) have been identified in postmortem tissue: intracellular RNA foci and repeat-associated non-ATG dependent (RAN) dipeptides, although it is unclear how these and other hallmarks of disease contribute to the pathophysiology of neuronal injury. Here, we describe two novel lines of mice that overexpress either 10 pure or 102 interrupted GGGGCC repeats mediated by adeno-associated virus (AAV) and recapitulate the relevant human pathology and disease-related behavioural phenotypes. Similar levels of intracellular RNA foci developed in both lines of mice, but only mice expressing 102 repeats generated C9orf72 RAN pathology, neuromuscular junction (NMJ) abnormalities, dispersal of the hippocampal CA1, enhanced apoptosis, and deficits in gait and cognition. Neither line of mice, however, showed extensive TAR DNA-binding protein 43 (TDP-43) pathology or neurodegeneration. Our data suggest that RNA foci pathology is not a good predictor of C9orf72 RAN dipeptide formation, and that RAN dipeptides and NMJ dysfunction are drivers of C9orf72 disease pathogenesis. These AAV-mediated models of C9orf72-associated ALS/FTD will be useful tools for studying disease pathophysiology and developing new therapeutic approaches.


Asunto(s)
Conducta Animal , Encéfalo/patología , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Dependovirus/metabolismo , Técnicas de Transferencia de Gen , Animales , Biomarcadores/metabolismo , Encéfalo/fisiopatología , Región CA1 Hipocampal/patología , Muerte Celular , Núcleo Celular/metabolismo , Cognición , Marcha , Células HEK293 , Humanos , Ratones , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Neuronas/metabolismo , Neuronas/patología , ARN/metabolismo , Proteína Sequestosoma-1/metabolismo , Regulación hacia Arriba
3.
Hum Mol Genet ; 26(6): 1133-1145, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28158451

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease, characterised by progressive failure of the neuromuscular system. A (G4C2)n repeat expansion in C9ORF72 is the most common genetic cause of ALS and frontotemporal dementia (FTD). To date, the balance of evidence indicates that the (G4C2)n repeat causes toxicity and neurodegeneration via a gain-of-toxic function mechanism; either through direct RNA toxicity or through the production of toxic aggregating dipeptide repeat proteins. Here, we have generated a stable and isogenic motor neuronal NSC34 cell model with inducible expression of a (G4C2)102 repeat, to investigate the gain-of-toxic function mechanisms. The expression of the (G4C2)102 repeat produces RNA foci and also undergoes RAN translation. In addition, the expression of the (G4C2)102 repeat shows cellular toxicity. Through comparison of transcriptomic data from the cellular model with laser-captured spinal motor neurons from C9ORF72-ALS cases, we also demonstrate that the PI3K/Akt cell survival signalling pathway is dysregulated in both systems. Furthermore, partial knockdown of Pten rescues the toxicity observed in the NSC34 (G4C2)102 cellular gain-of-toxic function model of C9ORF72-ALS. Our data indicate that PTEN may provide a potential therapeutic target to ameliorate toxic effects of the (G4C2)n repeat.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/genética , Fosfohidrolasa PTEN/genética , Proteínas/genética , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72 , Línea Celular , Supervivencia Celular , Demencia Frontotemporal/patología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , ARN/genética
4.
Hum Gene Ther ; 25(7): 575-86, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24845847

RESUMEN

Spinal muscular atrophy (SMA) is a severe autosomal recessive disease caused by a genetic defect in the survival motor neuron 1 (SMN1) gene, which encodes SMN, a protein widely expressed in all eukaryotic cells. Depletion of the SMN protein causes muscle weakness and progressive loss of movement in SMA patients. The field of gene therapy has made major advances over the past decade, and gene delivery to the central nervous system (CNS) by in vivo or ex vivo techniques is a rapidly emerging field in neuroscience. Despite Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis being among the most common neurodegenerative diseases in humans and attractive targets for treatment development, their multifactorial origin and complicated genetics make them less amenable to gene therapy. Monogenic disorders resulting from modifications in a single gene, such as SMA, prove more favorable and have been at the fore of this evolution of potential gene therapies, and results to date have been promising at least. With the estimated number of monogenic diseases standing in the thousands, elucidating a therapeutic target for one could have major implications for many more. Recent progress has brought about the commercialization of the first gene therapies for diseases, such as pancreatitis in the form of Glybera, with the potential for other monogenic disease therapies to follow suit. While much research has been carried out, there are many limiting factors that can halt or impede translation of therapies from the bench to the clinic. This review will look at both recent advances and encountered impediments in terms of SMA and endeavor to highlight the promising results that may be applicable to various associated diseases and also discuss the potential to overcome present limitations.


Asunto(s)
Enfermedades Genéticas Congénitas/terapia , Terapia Genética/métodos , Atrofia Muscular Espinal/terapia , Mutación , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/patología , Enfermedades Genéticas Congénitas/fisiopatología , Terapia Genética/tendencias , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/fisiopatología
5.
Behav Brain Res ; 243: 6-15, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23295396

RESUMEN

Despite the widely held belief that Parkinson's disease is caused by both underlying genetics and exposure to environmental risk factors, it is still widely modelled in preclinical models using a single genetic or neurotoxic insult. This single-insult approach has resulted in a variety of models that are limited with respect to their aetiological, construct, face and/or predictive validity. Thus, the aim of the current study was to investigate the interplay between genes and the environment as an alternative approach to modelling Parkinson's disease. To do so, rats underwent stereotaxic surgery for unilateral delivery of the Parkinson's disease-associated gene, α-synuclein, into the substantia nigra (using AAV vectors). This was followed 13 weeks later by subcutaneous implantation of an osmotic minipump delivering the Parkinson's disease-associated pesticide, rotenone (2.5mgkg(-1)day(-1) for 4 weeks). The effect of the genetic and environmental insults alone or in combination on lateralised motor performance (Corridor, Stepping and Whisker Tests), nigrostriatal integrity (tyrosine hydroxylase immunohistochemistry) and α-synucleinopathy (α-synuclein immunohistochemistry) was assessed. We found that exposing AAV-α-synuclein-treated rats to rotenone led to a model in which the classical Parkinson's disease triad of progressive motor dysfunction, nigrostriatal neurodegeneration and α-synucleinopathy was evident. However, delivering rotenone systemically was also associated with bilateral motor dysfunction and loss of body weight. Thus, although we have shown that Parkinson's disease can be modelled in experimental animals by combined exposure to both genetic and environmental risk factors, this approach is limited by systemic toxicity of the pesticide rotenone. Direct intracerebral delivery of rotenone may be more useful in longer-term studies as we have previously shown that it overcomes this limitation.


Asunto(s)
Modelos Animales de Enfermedad , Insecticidas/farmacología , Enfermedad de Parkinson/etiología , Rotenona/farmacología , alfa-Sinucleína/genética , Animales , Conducta Animal/efectos de los fármacos , Interacción Gen-Ambiente , Vectores Genéticos , Bombas de Infusión Implantables/estadística & datos numéricos , Insecticidas/administración & dosificación , Insecticidas/toxicidad , Masculino , Pruebas Neuropsicológicas , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Ratas , Ratas Sprague-Dawley , Rotenona/administración & dosificación , Rotenona/toxicidad , Sustancia Negra/metabolismo , Sustancia Negra/cirugía , Pérdida de Peso/efectos de los fármacos
6.
Brain Behav Immun ; 27(1): 91-100, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23044176

RESUMEN

Chronic neuroinflammation has been established as one of the many processes involved in the pathogenesis of Parkinson's disease (PD). Because of this, researchers have attempted to replicate this pathogenic feature in animal models using the potent inflammagen, lipopolysaccharide (LPS), in order to gain better understanding of immune-mediated events in PD. However, although the effect of intra-cerebral LPS on neuroinflammation and neurodegeneration has been relatively well characterised, its impact on motor function has been less well studied. Therefore, the aim of this study was to further characterise the neuropathological and behavioural impact of intra-nigral and intra-striatal administration of LPS. To do, LPS (10 µg) or vehicle (sterile saline) were stereotaxically injected into the adult rat substantia nigra or striatum on one side only. The effect of LPS administration on lateralised motor function was assessed using the Corridor, Stepping and Whisker tests for two weeks post-injection, after which, amphetamine-induced rotational asymmetry was completed. Post-mortem, the impact of LPS on nigrostriatal degeneration and microgliosis was assessed using quantitative tyrosine hydroxylase and OX-42 immunohistochemistry respectively. We found that intra-nigral administration of LPS led to localised microgliosis in the substantia nigra and this was accompanied by nigrostriatal neurodegeneration and stable spontaneous motor deficits. In contrast, intra-striatal administration of LPS led to localised microgliosis in the striatum but this did not lead to any nigrostriatal neurodegeneration and only induced transient motor dysfunction. In conclusion, this study reveals the impact of intra-cerebral LPS administration on PD-related neuropathology and motor function, and it indicates that the intra-nigral model may be a highly relevant model as it is associated with stable motor decline underpinned by nigral microgliosis and nigrostriatal neurodegeneration.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cuerpo Estriado , Gliosis , Lipopolisacáridos/farmacología , Actividad Motora/efectos de los fármacos , Enfermedad de Parkinson/inmunología , Sustancia Negra , Animales , Antígeno CD11b/efectos de los fármacos , Antígeno CD11b/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Gliosis/inducido químicamente , Gliosis/patología , Inmunohistoquímica , Masculino , Destreza Motora/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología , Tirosina 3-Monooxigenasa/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...