Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Med ; 24(9): 1481, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29921958

RESUMEN

In the version of this article originally published, the names of three authors were incorrect. The authors were listed as "Coral Fustero-Torres", "Elena Pineiro" and "Melchor Sánchez-Martínez". Their respective names are "Coral Fustero-Torre", "Elena Piñeiro-Yáñez" and "Melchor Sanchez-Martinez". The errors have been corrected in the print, HTML and PDF versions of this article.

2.
Nat Med ; 24(7): 1024-1035, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29892069

RESUMEN

The brain microenvironment imposes a particularly intense selective pressure on metastasis-initiating cells, but successful metastases bypass this control through mechanisms that are poorly understood. Reactive astrocytes are key components of this microenvironment that confine brain metastasis without infiltrating the lesion. Here, we describe that brain metastatic cells induce and maintain the co-option of a pro-metastatic program driven by signal transducer and activator of transcription 3 (STAT3) in a subpopulation of reactive astrocytes surrounding metastatic lesions. These reactive astrocytes benefit metastatic cells by their modulatory effect on the innate and acquired immune system. In patients, active STAT3 in reactive astrocytes correlates with reduced survival from diagnosis of intracranial metastases. Blocking STAT3 signaling in reactive astrocytes reduces experimental brain metastasis from different primary tumor sources, even at advanced stages of colonization. We also show that a safe and orally bioavailable treatment that inhibits STAT3 exhibits significant antitumor effects in patients with advanced systemic disease that included brain metastasis. Responses to this therapy were notable in the central nervous system, where several complete responses were achieved. Given that brain metastasis causes substantial morbidity and mortality, our results identify a novel treatment for increasing survival in patients with secondary brain tumors.


Asunto(s)
Astrocitos/patología , Neoplasias Encefálicas/secundario , Factor de Transcripción STAT3/metabolismo , Animales , Encéfalo/patología , Neoplasias Encefálicas/patología , Supervivencia Celular , Marcación de Gen , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Inmunidad Innata , Ratones , Fosforilación , Microambiente Tumoral
3.
PLoS One ; 13(5): e0197349, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29847570

RESUMEN

Recent clinical advances with chimeric antigen receptor (CAR) T cells have led to the accelerated clinical approval of CD19-CARs to treat acute lymphoblastic leukemia. The CAR T cell therapy is nevertheless associated with toxicities, especially if the CARs are not entirely tumor-specific. Therefore, strategies for controlling the CAR T cell activity are required to improve their safety profile. Here, by using the multiple myeloma (MM)-associated CD38 molecule as target molecule, we tested the feasibility and utility of a doxycycline (DOX) inducible Tet-on CD38-CAR design to control the off-target toxicities of CAR T cells. Using CARs with high affinity to CD38, we demonstrate that this strategy allows the proper induction of CD38-CARs and CAR-mediated T cell cytotoxicity in a DOX-dose dependent manner. Especially when the DOX dose was limited to 10ng/ml, its removal resulted in a relatively rapid decay of CAR- related off-tumor effects within 24 hours, indicating the active controllability of undesired CAR activity. This Tet-on CAR design also allowed us to induce the maximal anti-MM cytotoxic activity of affinity-optimized CD38-CAR T cells, which already display a low toxicity profile, hereby adding a second level of safety to these cells. Collectively, these results indicate the possibility to utilize this DOX inducible CAR-design to actively regulate the CAR-mediated activities of therapeutic T cells. We therefore conclude that the Tet-on system may be more advantageous above suicide-genes to control the potential toxicities of CAR T cells without the need to destroy them permanently.


Asunto(s)
ADP-Ribosil Ciclasa 1/inmunología , Doxiciclina/farmacología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , ADP-Ribosil Ciclasa 1/metabolismo , Médula Ósea/metabolismo , Muerte Celular , Células Cultivadas , Vectores Genéticos , Humanos , Leucocitos Mononucleares/metabolismo , Mieloma Múltiple/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...