Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
2.
Hypertension ; 81(3): 426-435, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37675565

RESUMEN

Salt sensitivity concerns blood pressure alterations after a change in salt intake (sodium chloride). The heart is a pump, and vessels are tubes; sodium can affect both. A high salt intake increases cardiac output, promotes vascular dysfunction and capillary rarefaction, and chronically leads to increased systemic vascular resistance. More recent findings suggest that sodium also acts as an important second messenger regulating energy metabolism and cellular functions. Besides endothelial cells and fibroblasts, sodium also affects innate and adaptive immunometabolism, immune cell function, and influences certain microbes and microbiota-derived metabolites. We propose the idea that the definition of salt sensitivity should be expanded beyond high blood pressure to cellular and molecular salt sensitivity.


Asunto(s)
Hipertensión , Sodio , Humanos , Sodio/metabolismo , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio Dietético/metabolismo , Células Endoteliales/metabolismo , Cloruro de Sodio , Presión Sanguínea/fisiología
4.
BMJ Open ; 13(10): e076415, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907297

RESUMEN

INTRODUCTION: The Berlin Long-term Observation of Vascular Events is a prospective cohort study that aims to improve prediction and disease-overarching mechanistic understanding of cardiovascular (CV) disease progression by comprehensively investigating a high-risk patient population with different organ manifestations. METHODS AND ANALYSIS: A total of 8000 adult patients will be recruited who have either suffered an acute CV event (CVE) requiring hospitalisation or who have not experienced a recent acute CVE but are at high CV risk. An initial study examination is performed during the acute treatment phase of the index CVE or after inclusion into the chronic high risk arm. Deep phenotyping is then performed after ~90 days and includes assessments of the patient's medical history, health status and behaviour, cardiovascular, nutritional, metabolic, and anthropometric parameters, and patient-related outcome measures. Biospecimens are collected for analyses including 'OMICs' technologies (e.g., genomics, metabolomics, proteomics). Subcohorts undergo MRI of the brain, heart, lung and kidney, as well as more comprehensive metabolic, neurological and CV examinations. All participants are followed up for up to 10 years to assess clinical outcomes, primarily major adverse CVEs and patient-reported (value-based) outcomes. State-of-the-art clinical research methods, as well as emerging techniques from systems medicine and artificial intelligence, will be used to identify associations between patient characteristics, longitudinal changes and outcomes. ETHICS AND DISSEMINATION: The study was approved by the Charité-Universitätsmedizin Berlin ethics committee (EA1/066/17). The results of the study will be disseminated through international peer-reviewed publications and congress presentations. STUDY REGISTRATION: First study phase: Approved WHO primary register: German Clinical Trials Register: https://drks.de/search/de/trial/DRKS00016852; WHO International Clinical Registry Platform: http://apps.who.int/trialsearch/Trial2.aspx?TrialID=DRKS00016852. Recruitment started on July 18, 2017.Second study phase: Approved WHO primary register: German Clinical Trials Register DRKS00023323, date of registration: November 4, 2020, URL: http://www.drks.de/ DRKS00023323. Recruitment started on January 1, 2021.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Adulto , Humanos , SARS-CoV-2 , Berlin , Estudios Prospectivos , Inteligencia Artificial , Estudios de Seguimiento , Pulmón
5.
Nutrients ; 15(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37049406

RESUMEN

The mammalian holobiont harbors a complex and interdependent mutualistic gut bacterial community. Shifts in the composition of this bacterial consortium are known to be a key element in host health, immunity and disease. Among many others, dietary habits are impactful drivers for a potential disruption of the bacteria-host mutualistic interaction. In this context, we previously demonstrated that a high-salt diet (HSD) leads to a dysbiotic condition of murine gut microbiota, characterized by a decrease or depletion of well-known health-promoting gut bacteria. However, due to a controlled and sanitized environment, conventional laboratory mice (CLM) possess a less diverse gut microbiota compared to wild mice, leading to poor translational outcome for gut microbiome studies, since a reduced gut microbiota diversity could fail to depict the complex interdependent networks of the microbiome. Here, we evaluated the HSD effect on gut microbiota in CLM in comparison to wildling mice, which harbor a natural gut ecosystem more closely mimicking the situation in humans. Mice were treated with either control food or HSD and gut microbiota were profiled using amplicon-based methods targeting the 16S ribosomal gene. In line with previous findings, our results revealed that HSD induced significant loss of alpha diversity and extensive modulation of gut microbiota composition in CLM, characterized by the decrease in potentially beneficial bacteria from Firmicutes phylum such as the genera Lactobacillus, Roseburia, Tuzzerella, Anaerovorax and increase in Akkermansia and Parasutterella. However, HSD-treated wildling mice did not show the same changes in terms of alpha diversity and loss of Firmicutes bacteria as CLM, and more generally, wildlings exhibited only minor shifts in the gut microbiota composition upon HSD. In line with this, 16S-based functional analysis suggested only major shifts of gut microbiota ecological functions in CLM compared to wildling mice upon HSD. Our findings indicate that richer and wild-derived gut microbiota is more resistant to dietary interventions such as HSD, compared to gut microbiota of CLM, which may have important implications for future translational microbiome research.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Ratones , Humanos , Animales , Bacterias/genética , Dieta , Conducta Alimentaria , Firmicutes , Clostridiales/genética , ARN Ribosómico 16S/genética , Mamíferos
7.
Cardiovasc Res ; 119(7): 1553-1567, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-36951047

RESUMEN

AIMS: Cardiac energy metabolism is centrally involved in heart failure (HF), although the direction of the metabolic alterations is complex and likely dependent on the particular stage of HF progression. Vascular endothelial growth factor B (VEGF-B) has been shown to modulate metabolic processes and to induce physiological cardiac hypertrophy; thus, it could be cardioprotective in the failing myocardium. This study investigates the role of VEGF-B in cardiac proteomic and metabolic adaptation in HF during aldosterone and high-salt hypertensive challenges. METHODS AND RESULTS: Male rats overexpressing the cardiac-specific VEGF-B transgene (VEGF-B TG) were treated for 3 or 6 weeks with deoxycorticosterone-acetate combined with a high-salt (HS) diet (DOCA + HS) to induce hypertension and cardiac damage. Extensive longitudinal echocardiographic studies of HF progression were conducted, starting at baseline. Sham-treated rats served as controls. To evaluate the metabolic alterations associated with HF, cardiac proteomics by mass spectrometry was performed. Hypertrophic non-treated VEGF-B TG hearts demonstrated high oxygen and adenosine triphosphate (ATP) demand with early onset of diastolic dysfunction. Administration of DOCA + HS to VEGF-B TG rats for 6 weeks amplified the progression from cardiac hypertrophy to HF, with a drastic drop in heart ATP concentration. Dobutamine stress echocardiographic analyses uncovered a significantly impaired systolic reserve. Mechanistically, the hallmark of the failing TG heart was an abnormal energy metabolism with decreased mitochondrial ATP, preceding the attenuated cardiac performance and leading to systolic HF. CONCLUSIONS: This study shows that the VEGF-B TG accelerates metabolic maladaptation which precedes structural cardiomyopathy in experimental hypertension and ultimately leads to systolic HF.


Asunto(s)
Acetato de Desoxicorticosterona , Insuficiencia Cardíaca Sistólica , Insuficiencia Cardíaca , Hipertensión , Ratas , Masculino , Animales , Factor B de Crecimiento Endotelial Vascular/metabolismo , Insuficiencia Cardíaca Sistólica/complicaciones , Proteómica , Hipertensión/metabolismo , Miocardio/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/complicaciones , Cardiomegalia/genética , Cardiomegalia/metabolismo
8.
Cell Metab ; 35(2): 299-315.e8, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754020

RESUMEN

FOXP3+ regulatory T cells (Tregs) are central for peripheral tolerance, and their deregulation is associated with autoimmunity. Dysfunctional autoimmune Tregs display pro-inflammatory features and altered mitochondrial metabolism, but contributing factors remain elusive. High salt (HS) has been identified to alter immune function and to promote autoimmunity. By investigating longitudinal transcriptional changes of human Tregs, we identified that HS induces metabolic reprogramming, recapitulating features of autoimmune Tregs. Mechanistically, extracellular HS raises intracellular Na+, perturbing mitochondrial respiration by interfering with the electron transport chain (ETC). Metabolic disturbance by a temporary HS encounter or complex III blockade rapidly induces a pro-inflammatory signature and FOXP3 downregulation, leading to long-term dysfunction in vitro and in vivo. The HS-induced effect could be reversed by inhibition of mitochondrial Na+/Ca2+ exchanger (NCLX). Our results indicate that salt could contribute to metabolic reprogramming and that short-term HS encounter perturb metabolic fitness and long-term function of human Tregs with important implications for autoimmunity.


Asunto(s)
Sodio , Linfocitos T Reguladores , Humanos , Sodio/metabolismo , Autoinmunidad , Factores de Transcripción Forkhead/metabolismo
9.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768814

RESUMEN

(1) Background: Sympathetic overactivity is a major contributor to resistant hypertension (RH). According to animal studies, sympathetic overactivity increases immune responses, thereby aggravating hypertension and cardiovascular outcomes. Renal denervation (RDN) reduces sympathetic nerve activity in RH. Here, we investigate the effect of RDN on T-cell signatures in RH. (2) Methods: Systemic inflammation and T-cell subsets were analyzed in 17 healthy individuals and 30 patients with RH at baseline and 6 months after RDN. (3) Results: The patients with RH demonstrated higher levels of pro-inflammatory cytokines and higher frequencies of CD4+ effector memory (TEM), CD4+ effector memory residential (TEMRA) and CD8+ central memory (TCM) cells than the controls. After RDN, systolic automated office blood pressure (BP) decreased by -17.6 ± 18.9 mmHg. Greater BP reductions were associated with higher CD4+ TEM (r -0.421, p = 0.02) and CD8+ TCM (r -0.424, p = 0.02) frequencies at baseline. The RDN responders, that is, the patients with ≥10mmHg systolic BP reduction, showed reduced pro-inflammatory cytokine levels, whereas the non-responders had unchanged inflammatory activity and higher CD8+ TEMRA frequencies with increased cellular cytokine production. (4) Conclusions: The pro-inflammatory state of patients with RH is characterized by altered T-cell signatures, especially in non-responders. A detailed analysis of T cells might be useful in selecting patients for RDN.


Asunto(s)
Hipertensión , Hipotensión , Humanos , Simpatectomía , Resultado del Tratamiento , Linfocitos T , Riñón , Presión Sanguínea/fisiología , Citocinas
10.
Cardiovasc Res ; 119(6): 1441-1452, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35904261

RESUMEN

AIMS: Hypertension (HTN) can lead to heart and kidney damage. The gut microbiota has been linked to HTN, although it is difficult to estimate its significance due to the variety of other features known to influence HTN. In the present study, we used germ-free (GF) and colonized (COL) littermate mice to quantify the impact of microbial colonization on organ damage in HTN. METHODS AND RESULTS: 4-week-old male GF C57BL/6J littermates were randomized to remain GF or receive microbial colonization. HTN was induced by subcutaneous infusion with angiotensin (Ang) II (1.44 mg/kg/day) and 1% NaCl in the drinking water; sham-treated mice served as control. Renal damage was exacerbated in GF mice, whereas cardiac damage was more comparable between COL and GF, suggesting that the kidney is more sensitive to microbial influence. Multivariate analysis revealed a larger effect of HTN in GF mice. Serum metabolomics demonstrated that the colonization status influences circulating metabolites relevant to HTN. Importantly, GF mice were deficient in anti-inflammatory faecal short-chain fatty acids (SCFA). Flow cytometry showed that the microbiome has an impact on the induction of anti-hypertensive myeloid-derived suppressor cells and pro-inflammatory Th17 cells in HTN. In vitro inducibility of Th17 cells was significantly higher for cells isolated from GF than conventionally raised mice. CONCLUSION: The microbial colonization status of mice had potent effects on their phenotypic response to a hypertensive stimulus, and the kidney is a highly microbiota-susceptible target organ in HTN. The magnitude of the pathogenic response in GF mice underscores the role of the microbiome in mediating inflammation in HTN.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión , Microbiota , Animales , Masculino , Ratones , Inflamación , Ratones Endogámicos C57BL
11.
J Cereb Blood Flow Metab ; 43(2): 210-230, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36329390

RESUMEN

Spreading depolarization (SD) occurs in a plethora of clinical conditions including migraine aura, delayed ischemia after subarachnoid hemorrhage and malignant hemispheric stroke. It describes waves of near-breakdown of ion homeostasis, particularly Na+ homeostasis in brain gray matter. SD induces tone alterations in resistance vessels, causing either hyperperfusion in healthy tissue; or hypoperfusion (inverse hemodynamic response = spreading ischemia) in tissue at risk. Observations from mice with genetic dysfunction of the ATP1A2-encoded α2-isoform of Na+/K+-ATPase (α2NaKA) suggest a mechanistic link between (1) SD, (2) vascular dysfunction, and (3) salt-sensitive hypertension via α2NaKA. Thus, α2NaKA-dysfunctional mice are more susceptible to SD and show a shift toward more inverse hemodynamic responses. α2NaKA-dysfunctional patients suffer from familial hemiplegic migraine type 2, a Mendelian model disease of SD. α2NaKA-dysfunctional mice are also a genetic model of salt-sensitive hypertension. To determine whether SD thresholds and hemodynamic responses are also altered in other genetic models of salt-sensitive hypertension, we examined these variables in stroke-prone spontaneously hypertensive rats (SHRsp). Compared with Wistar Kyoto control rats, we found in SHRsp that electrical SD threshold was significantly reduced, propagation speed was increased, and inverse hemodynamic responses were prolonged. These results may have relevance to both migraine with aura and stroke.


Asunto(s)
Depresión de Propagación Cortical , Hipertensión , Migraña con Aura , Accidente Cerebrovascular , Ratas , Ratones , Animales , Ratas Endogámicas SHR , Depresión de Propagación Cortical/fisiología , Migraña con Aura/genética , Cloruro de Sodio Dietético , Hemodinámica , Ratas Endogámicas WKY , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Hipertensión/complicaciones
12.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499721

RESUMEN

The placenta is a temporary organ with a unique structure and function to ensure healthy fetal development. Placental dysfunction is involved in pre-eclampsia (PE), fetal growth restriction, preterm birth, and gestational diabetes mellitus (GDM). A diabetic state affects maternal and fetal health and may lead to functional alterations of placental metabolism, inflammation, hypoxia, and weight, amplifying the fetal stress. The placental molecular adaptations to the diabetic environment and the adaptive spatio-temporal consequences to elevated glucose or insulin are largely unknown (2). We aimed to identify gene expression signatures related to the diabetic placental pathology of placentas from women with diabetes mellitus. Human placenta samples (n = 77) consisting of healthy controls, women with either gestational diabetes mellitus (GDM), type 1 or type 2 diabetes, and women with GDM, type 1 or type 2 diabetes and superimposed PE were collected. Interestingly, gene expression differences quantified by total RNA sequencing were mainly driven by fetal sex rather than clinical diagnosis. Association of the principal components with a full set of clinical patient data identified fetal sex as the single main explanatory variable. Accordingly, placentas complicated by type 1 and type 2 diabetes showed only few differentially expressed genes, while possible effects of GDM and diabetic pregnancy complicated by PE were not identifiable in this cohort. We conclude that fetal sex has a prominent effect on the placental transcriptome, dominating and confounding gene expression signatures resulting from diabetes mellitus in settings of well-controlled diabetic disease. Our results support the notion of placenta as a sexual dimorphic organ.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Preeclampsia , Embarazo en Diabéticas , Nacimiento Prematuro , Femenino , Recién Nacido , Embarazo , Humanos , Placenta/metabolismo , Diabetes Gestacional/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nacimiento Prematuro/metabolismo , Embarazo en Diabéticas/metabolismo , Preeclampsia/metabolismo
13.
Circulation ; 146(23): 1758-1778, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36259389

RESUMEN

BACKGROUND: Phosphodiesterase 3A (PDE3A) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, PDE3A mutations could be protective. METHODS: We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying PDE3A mutations were established, differentiated to cardiomyocytes, and analyzed by Ca2+ imaging. We used Förster resonance energy transfer and biochemical assays. RESULTS: We identified a new PDE3A mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB PDE3A mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The ß-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the PDE3A mutations caused adaptive changes of Ca2+ cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. CONCLUSIONS: Although in vascular smooth muscle, PDE3A mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of PDE3A mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Células Madre Pluripotentes Inducidas , Humanos , Ratas , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Microtomografía por Rayos X , Células Madre Pluripotentes Inducidas/metabolismo , Hipertensión/complicaciones , Hipertensión/genética , Miocitos Cardíacos/metabolismo , Cardiomegalia , ARN
14.
Hypertension ; 79(11): 2451-2462, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36043415

RESUMEN

BACKGROUND: Recent studies have indicated that sodium storage is influenced by macrophages that secrete VEGF-C (vascular endothelial growth factor) during salt stress thus stimulating lymphangiogenesis, thereby acting as a buffer against increased blood pressure (BP). We aimed to explore the role of dermal lymphatics in BP and sodium homeostasis. Our hypothesis was that mice with reduced dermal lymphatic vessels were more prone to develop salt-sensitive hypertension, and that mice with hyperplastic vessels were protected. METHODS: Mice with either hypoplastic (Chy), absent (K14-VEGFR3 [vascular endothelial growth factor receptor 3]-Ig), or hyperplastic (K14-VEGF-C) dermal lymphatic vessels and littermate controls were given high-salt diet (4% NaCl in the chow), deoxycorticosterone acetate (DOCA)-salt diet and 1% saline to drink or nitric oxide blocker diet L-NG-nitro arginine methyl ester (followed by high salt diet). BP was measured by telemetric recording, and tissue sodium content by ion chromatography. RESULTS: In contrast to previous studies, high salt diet did not induce an increase in BP or sodium storage in any of the mouse strains investigated. DOCA-salt, on the other hand, gave an increase in BP in Chy and K14-VEGFR3-Ig not different from their corresponding WT controls. DOCA induced salt storage in skin and muscle, but to the same extent in mice with dysfunctional lymphatic vessels and WT controls. Lymph flow as assessed by tracer washout was not affected by the diet in any of the mouse strains. CONCLUSIONS: Our results suggest that dermal lymphatic vessels are not involved in salt storage or blood pressure regulation in these mouse models of salt-sensitive hypertension.


Asunto(s)
Acetato de Desoxicorticosterona , Hipertensión , Ratones , Animales , Presión Sanguínea/fisiología , Linfangiogénesis , Factor C de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular , Modelos Animales de Enfermedad , Sodio , Ingeniería Genética , Desoxicorticosterona/farmacología
17.
Nutrients ; 14(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35057434

RESUMEN

High salt intake ranks among the most important risk factors for noncommunicable diseases. Western diets, which are typically high in salt, are associated with a high prevalence of obesity. High salt is thought to be a potential risk factor for obesity independent of energy intake, although the underlying mechanisms are insufficiently understood. A high salt diet could influence energy expenditure (EE), specifically diet-induced thermogenesis (DIT), which accounts for about 10% of total EE. We aimed to investigate the influence of high salt on DIT. In a randomized, double-blind, placebo-controlled, parallel-group study, 40 healthy subjects received either 6 g/d salt (NaCl) or placebo in capsules over 2 weeks. Before and after the intervention, resting EE, DIT, body composition, food intake, 24 h urine analysis, and blood pressure were obtained. EE was measured by indirect calorimetry after a 12 h overnight fast and a standardized 440 kcal meal. Thirty-eight subjects completed the study. Salt intake from foods was 6 g/d in both groups, resulting in a total salt intake of 12 g/d in the salt group and 6 g/d in the placebo group. Urine sodium increased by 2.29 g/d (p < 0.0001) in the salt group, indicating overall compliance. The change in DIT differed significantly between groups (placebo vs. salt, p = 0.023). DIT decreased by 1.3% in the salt group (p = 0.048), but increased by 0.6% in the placebo group (NS). Substrate oxidation indicated by respiratory exchange ratio, body composition, resting blood pressure, fluid intake, hydration, and urine volume did not change significantly in either group. A moderate short-term increase in salt intake decreased DIT after a standardized meal. This effect could at least partially contribute to the observed weight gain in populations consuming a Western diet high in salt.


Asunto(s)
Dieta , Obesidad/etiología , Cloruro de Sodio Dietético/administración & dosificación , Termogénesis/efectos de los fármacos , Adulto , Presión Sanguínea , Composición Corporal , Calorimetría Indirecta , Método Doble Ciego , Metabolismo Energético/fisiología , Femenino , Voluntarios Sanos , Humanos , Masculino , Placebos/administración & dosificación , Placebos/farmacología , Factores de Riesgo , Sodio/orina , Cloruro de Sodio Dietético/farmacología , Termogénesis/fisiología
18.
Cardiovasc Res ; 118(11): 2415-2427, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34550344

RESUMEN

Recent preclinical and observational cohort studies have implicated imbalances in gut microbiota composition as a contributor to atrial fibrillation (AF). The gut microbiota is a complex and dynamic ecosystem containing trillions of microorganisms, which produces bioactive metabolites influencing host health and disease development. In addition to host-specific determinants, lifestyle-related factors such as diet and drugs are important determinants of the gut microbiota composition. In this review, we discuss the evidence suggesting a potential bidirectional association between AF and gut microbiota, identifying gut microbiota-derived metabolites as possible regulators of the AF substrate. We summarize the effect of gut microbiota on the development and progression of AF risk factors, including heart failure, hypertension, obesity, and coronary artery disease. We also discuss the potential anti-arrhythmic effects of pharmacological and diet-induced modifications of gut microbiota composition, which may modulate and prevent the progression to AF. Finally, we highlight important gaps in knowledge and areas requiring future investigation. Although data supporting a direct relationship between gut microbiota and AF are very limited at the present time, emerging preclinical and clinical research dealing with mechanistic interactions between gut microbiota and AF is important as it may lead to new insights into AF pathophysiology and the discovery of novel therapeutic targets for AF.


Asunto(s)
Fibrilación Atrial , Microbioma Gastrointestinal , Disbiosis , Ecosistema , Humanos , Obesidad
19.
Eur Heart J ; 43(6): 518-533, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34597388

RESUMEN

AIMS: Atherosclerotic cardiovascular disease (ACVD) is a major cause of mortality and morbidity worldwide, and increased low-density lipoproteins (LDLs) play a critical role in development and progression of atherosclerosis. Here, we examined for the first time gut immunomodulatory effects of the microbiota-derived metabolite propionic acid (PA) on intestinal cholesterol metabolism. METHODS AND RESULTS: Using both human and animal model studies, we demonstrate that treatment with PA reduces blood total and LDL cholesterol levels. In apolipoprotein E-/- (Apoe-/-) mice fed a high-fat diet (HFD), PA reduced intestinal cholesterol absorption and aortic atherosclerotic lesion area. Further, PA increased regulatory T-cell numbers and interleukin (IL)-10 levels in the intestinal microenvironment, which in turn suppressed the expression of Niemann-Pick C1-like 1 (Npc1l1), a major intestinal cholesterol transporter. Blockade of IL-10 receptor signalling attenuated the PA-related reduction in total and LDL cholesterol and augmented atherosclerotic lesion severity in the HFD-fed Apoe-/- mice. To translate these preclinical findings to humans, we conducted a randomized, double-blinded, placebo-controlled human study (clinical trial no. NCT03590496). Oral supplementation with 500 mg of PA twice daily over the course of 8 weeks significantly reduced LDL [-15.9 mg/dL (-8.1%) vs. -1.6 mg/dL (-0.5%), P = 0.016], total [-19.6 mg/dL (-7.3%) vs. -5.3 mg/dL (-1.7%), P = 0.014] and non-high-density lipoprotein cholesterol levels [PA vs. placebo: -18.9 mg/dL (-9.1%) vs. -0.6 mg/dL (-0.5%), P = 0.002] in subjects with elevated baseline LDL cholesterol levels. CONCLUSION: Our findings reveal a novel immune-mediated pathway linking the gut microbiota-derived metabolite PA with intestinal Npc1l1 expression and cholesterol homeostasis. The results highlight the gut immune system as a potential therapeutic target to control dyslipidaemia that may introduce a new avenue for prevention of ACVDs.


Asunto(s)
Aterosclerosis , Propionatos , Animales , Apolipoproteínas E/metabolismo , Aterosclerosis/etiología , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Humanos , Absorción Intestinal , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Propionatos/farmacología , Propionatos/uso terapéutico
20.
J Invest Dermatol ; 142(1): 166-178.e8, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34237339

RESUMEN

Sodium can accumulate in the skin at concentrations exceeding serum levels. A high sodium environment can lead to pathogenic T helper 17 cell expansion. Psoriasis is a chronic inflammatory skin disease in which IL-17‒producing T helper 17 cells play a crucial role. In an observational study, we measured skin sodium content in patients with psoriasis and in age-matched healthy controls by Sodium-23 magnetic resonance imaging. Patients with PASI > 5 showed significantly higher sodium and water content in the skin but not in other tissues than those with lower PASI or healthy controls. Skin sodium concentrations measured by Sodium-23 spectroscopy or by atomic absorption spectrometry in ashed-skin biopsies verified the findings with Sodium-23 magnetic resonance imaging. In vitro T helper 17 cell differentiation of naive CD4+ cells from patients with psoriasis markedly induced IL-17A expression under increased sodium chloride concentrations. The imiquimod-induced psoriasis mouse model replicated the human findings. Extracellular tracer Chromium-51-EDTA measurements in imiquimod- and sham-treated skin showed similar extracellular volumes, rendering excessive water of intracellular origin. Chronic genetic IL-17A‒driven psoriasis mouse models underlined the role of IL-17A in dermal sodium accumulation and inflammation. Our data describe skin sodium as a pathophysiological feature of psoriasis, which could open new avenues for its treatment.


Asunto(s)
Interleucina-17/metabolismo , Psoriasis/metabolismo , Piel/metabolismo , Sodio/análisis , Células Th17/inmunología , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Índice de Severidad de la Enfermedad , Piel/patología , Cloruro de Sodio/metabolismo , Espectrofotometría Atómica , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...