Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anim Cogn ; 19(1): 181-92, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26391028

RESUMEN

How individuals modulate their behavior according to social context is a major issue in the understanding of group initiation, group stability and the distribution of individuals. Herein, we investigated the mechanisms of aggregation behavior in Porcellio scaber, a terrestrial isopod member of the Oniscidea, a unique and common group of terrestrial crustaceans. We performed binary choice tests using shelters with a wide range of population densities (from 10 to 150 individuals). First, the observed collective choices of shelters strengthen the demonstration of a social inter-attraction in terrestrial isopods; especially, in less than 10 min, the aggregation reaches its maximal value, and in less than 100 s, the collective choice is made, i.e., one shelter is selected. In addition, the distribution of individuals shows the existence of (1) quorum rules, by which an aggregate cannot emerge under a threshold value of individuals, and (2) a maximum population size, which leads to a splitting of the populations. These collective results are in agreement with the individual's probability of joining and leaving an aggregate attesting to a greater attractiveness of the group to migrants and greater retention of conspecifics with group size. In this respect, we show that the emergence of aggregation in terrestrial isopods is based on amplification mechanisms. And lastly, our results indicate how local cues about the spatial organization of individuals may favor this emergence and how individuals spatiotemporally reorganize toward a compact form reducing the exchange with the environment. This study provides the first evidence of self-organization in a gregarious crustacean, similar as has been widely emphasized in gregarious insects and eusocial insects.


Asunto(s)
Isópodos/fisiología , Animales , Conducta Animal , Señales (Psicología) , Conducta Social
2.
R Soc Open Sci ; 2(11): 150428, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26715999

RESUMEN

In a patchy environment, how social animals manage conspecific and environmental cues in their choice of habitat is a leading issue for understanding their spatial distribution and their exploitation of resources. Here, we experimentally tested the effects of environmental heterogeneities (artificial shelters) and some of their characteristics (size and fragmentation) on the aggregation process of a common species of terrestrial isopod (Crustacea). One hundred individuals were introduced into three different heterogeneous set-ups and in a homogeneous set-up. In the four set-ups, the populations split into two aggregates: one large (approx. 70 individuals) and one smaller (approx. 20 individuals). These aggregates were not randomly distributed in the arena but were formed diametrically opposite from one another. The similarity of the results among the four set-ups shows that under experimental conditions, the environmental heterogeneities have a low impact on the aggregation dynamics and spatial patterns of the isopod, merely serving to increase the probability of nucleation of the larger aggregation at these points. By contrast, the regulation of aggregate sizes and the regular distribution of groups are signatures of local amplification processes, in agreement with the short-range activator and long-range inhibitor model (scale-dependent feedbacks). In other words, we show how small-scale interactions may govern large-scale spatial patterns. This experimental illustration of spatial self-organization is an important step towards comprehension of the complex game of competition among groups in social species.

3.
Mol Cell ; 51(4): 539-51, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23973377

RESUMEN

Mature ribosomal RNAs (rRNAs) are produced from polycistronic precursors following complex processing. Precursor (pre)-rRNA processing has been extensively characterized in yeast and was assumed to be conserved in humans. We functionally characterized 625 nucleolar proteins in HeLa cells and identified 286 required for processing, including 74 without a yeast homolog. For selected candidates, we demonstrated that pre-rRNA processing defects are conserved in different cell types (including primary cells), defects are not due to activation of a p53-dependent nucleolar tumor surveillance pathway, and they precede cell-cycle arrest and apoptosis. We also investigated the exosome's role in processing internal transcribed spacers (ITSs) and report that 3' end maturation of 18S rRNA involves EXOSC10/Rrp6, a yeast ITS2 processing factor. We conclude that human cells adopt unique strategies and recruit distinct trans-acting factors to carry out essential processing steps, posing fundamental implications for understanding ribosomopathies at the molecular level and developing effective therapeutic agents.


Asunto(s)
Nucléolo Celular/genética , Proteínas Nucleares/metabolismo , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN Ribosómico/genética , Ribosomas/metabolismo , Transactivadores/metabolismo , Apoptosis , Northern Blotting , Puntos de Control del Ciclo Celular , Nucléolo Celular/metabolismo , Células Cultivadas , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Células HCT116 , Células HeLa , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Proteínas Nucleares/genética , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Transactivadores/genética
4.
Zookeys ; (176): 133-44, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22536104

RESUMEN

Terrestrial isopods are known to be sensitive to humidity, brightness or temperature. Until now, aggregation was assumed to depend on these sensitivities as a result of individual preferences. In this paper, we show that the social component is also important in the isopod aggregation phenomenon. In experimental arenas with two identical shelters up to nearly 90% of woodlice aggregated under shelters. This aggregation was quick as in 10 minutes most of the animals aggregated, irrespective of their density. Nonetheless, 10-15% of the animals walked around the arena, rarely forming very small and short-lasting aggregates outside shelters. Woodlice aggregated preferably under one of the shelters in 77% of experiments. Indeed, almost 80% of the animals out of 40, 60 or 80 animals in the arena aggregated under one shelter. In arenas with 100 individuals the aggregations were proportionally smaller (70%). Our results revealed that 70 animals was a maximum number of woodlice in an aggregate. We concluded that the location of aggregates is strongly governed by individual preferences but the dynamics of aggregation and collective choice are controlled by social interaction between congeners. The tested densities of the animals in the arena did not impact the aggregation patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...