Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 5: 17, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28361051

RESUMEN

The canonical CysXXXCysXXCys motif is the hallmark of the Radical-SAM superfamily. This motif is responsible for the ligation of a [4Fe-4S] cluster containing a free coordination site available for SAM binding. The five enzymes MoaA, TYW1, MiaB, RimO and LipA contain in addition a second [4Fe-4S] cluster itself bound to three other cysteines and thus also displaying a potentially free coordination site. This review article summarizes recent important achievements obtained on these five enzymes with the main focus to delineate the role of this additional [4Fe-4S] cluster in catalysis.

2.
Biochemistry ; 55(41): 5798-5808, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27677419

RESUMEN

RimO, a radical-S-adenosylmethionine (SAM) enzyme, catalyzes the specific C3 methylthiolation of the D89 residue in the ribosomal S12 protein. Two intact iron-sulfur clusters and two SAM cofactors both are required for catalysis. By using electron paramagnetic resonance, Mössbauer spectroscopies, and site-directed mutagenesis, we show how two SAM molecules sequentially bind to the unique iron site of the radical-SAM cluster for two distinct chemical reactions in RimO. Our data establish that the two SAM molecules bind the radical-SAM cluster to the unique iron site, and spectroscopic evidence obtained under strongly reducing conditions supports a mechanism in which the first molecule of SAM causes the reoxidation of the reduced radical-SAM cluster, impeding reductive cleavage of SAM to occur and allowing SAM to methylate a HS- ligand bound to the additional cluster. Furthermore, by using density functional theory-based methods, we provide a description of the reaction mechanism that predicts the attack of the carbon radical substrate on the methylthio group attached to the additional [4Fe-4S] cluster.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , S-Adenosilmetionina/metabolismo , Sulfurtransferasas/metabolismo , Catálisis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Análisis Espectral/métodos , Sulfurtransferasas/genética
3.
J Biol Inorg Chem ; 21(4): 549-57, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27259294

RESUMEN

Radical SAM enzymes generally contain a [4Fe-4S](2+/1+) (RS cluster) cluster bound to the protein via the three cysteines of a canonical motif CxxxCxxC. The non-cysteinyl iron is used to coordinate SAM via its amino-carboxylate moiety. The coordination-induced proximity between the cluster acting as an electron donor and the adenosyl-sulfonium bond of SAM allows for the homolytic cleavage of the latter leading to the formation of the reactive 5'-deoxyadenosyl radical used for substrate activation. Most of the structures of Radical SAM enzymes have been obtained in the presence of SAM, and therefore, little is known about the situation when SAM is not present. In this report, we show that RimO, a methylthiotransferase belonging to the radical SAM superfamily, binds a Tris molecule in the absence of SAM leading to specific spectroscopic signatures both in Mössbauer and pulsed EPR spectroscopies. These data provide a cautionary note for researchers who work with coordinative unsaturated iron sulfur clusters.


Asunto(s)
S-Adenosilmetionina/química , Sulfurtransferasas/química , Trometamina/química , Tampones (Química) , S-Adenosilmetionina/metabolismo , Sulfurtransferasas/metabolismo , Thermotoga maritima/enzimología
4.
PLoS One ; 10(7): e0128199, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26147435

RESUMEN

Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, the building blocks for DNA synthesis, and are found in all but a few organisms. RNRs use radical chemistry to catalyze the reduction reaction. Despite RNR having evolved several mechanisms for generation of different kinds of essential radicals across a large evolutionary time frame, this initial radical is normally always channelled to a strictly conserved cysteine residue directly adjacent to the substrate for initiation of substrate reduction, and this cysteine has been found in the structures of all RNRs solved to date. We present the crystal structure of an anaerobic RNR from the extreme thermophile Thermotoga maritima (tmNrdD), alone and in several complexes, including with the allosteric effector dATP and its cognate substrate CTP. In the crystal structure of the enzyme as purified, tmNrdD lacks a cysteine for radical transfer to the substrate pre-positioned in the active site. Nevertheless activity assays using anaerobic cell extracts from T. maritima demonstrate that the class III RNR is enzymatically active. Other genetic and microbiological evidence is summarized indicating that the enzyme is important for T. maritima. Mutation of either of two cysteine residues in a disordered loop far from the active site results in inactive enzyme. We discuss the possible mechanisms for radical initiation of substrate reduction given the collected evidence from the crystal structure, our activity assays and other published work. Taken together, the results suggest either that initiation of substrate reduction may involve unprecedented conformational changes in the enzyme to bring one of these cysteine residues to the expected position, or that alternative routes for initiation of the RNR reduction reaction may exist. Finally, we present a phylogenetic analysis showing that the structure of tmNrdD is representative of a new RNR subclass IIIh, present in all Thermotoga species plus a wider group of bacteria from the distantly related phyla Firmicutes, Bacteroidetes and Proteobacteria.


Asunto(s)
Cisteína/química , Ribonucleótido Reductasas/química , Thermotoga maritima/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica
5.
RNA Biol ; 11(12): 1508-18, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25629788

RESUMEN

Over the last 10 years, significant progress has been made in understanding the genetics, enzymology and structural components of the wybutosine (yW) biosynthetic pathway. These studies have played a key role in expanding our understanding of yW biosynthesis and have revealed unexpected evolutionary ties, which are presently being unraveled. The enzymes catalyzing the 5 steps of this pathway, from genetically encoded guanosine to wybutosine base, provide an ensemble of amazing reaction mechanisms that are to be discussed in this review article.


Asunto(s)
Proteínas Arqueales/química , Nucleósidos/biosíntesis , Proteínas de Saccharomyces cerevisiae/química , ARNt Metiltransferasas/química , Archaea/enzimología , Archaea/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Secuencia de Bases , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
6.
Nat Chem Biol ; 9(5): 333-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23542644

RESUMEN

How living organisms create carbon-sulfur bonds during the biosynthesis of critical sulfur-containing compounds is still poorly understood. The methylthiotransferases MiaB and RimO catalyze sulfur insertion into tRNAs and ribosomal protein S12, respectively. Both belong to a subgroup of radical-S-adenosylmethionine (radical-SAM) enzymes that bear two [4Fe-4S] clusters. One cluster binds S-adenosylmethionine and generates an Ado• radical via a well-established mechanism. However, the precise role of the second cluster is unclear. For some sulfur-inserting radical-SAM enzymes, this cluster has been proposed to act as a sacrificial source of sulfur for the reaction. In this paper, we report parallel enzymological, spectroscopic and crystallographic investigations of RimO and MiaB, which provide what is to our knowledge the first evidence that these enzymes are true catalysts and support a new sulfation mechanism involving activation of an exogenous sulfur cosubstrate at an exchangeable coordination site on the second cluster, which remains intact during the reaction.


Asunto(s)
Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , S-Adenosilmetionina/metabolismo , Azufre/metabolismo , Sulfurtransferasas/metabolismo , Thermotoga maritima/metabolismo , Biocatálisis , Cristalografía por Rayos X , Radicales Libres/metabolismo , Modelos Moleculares , Estructura Molecular , Azufre/química , Sulfurtransferasas/química , Thermotoga maritima/enzimología
7.
J Biol Chem ; 287(49): 41174-85, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23043105

RESUMEN

Wybutosine and its derivatives are found in position 37 of tRNA encoding Phe in eukaryotes and archaea. They are believed to play a key role in the decoding function of the ribosome. The second step in the biosynthesis of wybutosine is catalyzed by TYW1 protein, which is a member of the well established class of metalloenzymes called "Radical-SAM." These enzymes use a [4Fe-4S] cluster, chelated by three cysteines in a CX(3)CX(2)C motif, and S-adenosyl-L-methionine (SAM) to generate a 5'-deoxyadenosyl radical that initiates various chemically challenging reactions. Sequence analysis of TYW1 proteins revealed, in the N-terminal half of the enzyme beside the Radical-SAM cysteine triad, an additional highly conserved cysteine motif. In this study we show by combining analytical and spectroscopic methods including UV-visible absorption, Mössbauer, EPR, and HYSCORE spectroscopies that these additional cysteines are involved in the coordination of a second [4Fe-4S] cluster displaying a free coordination site that interacts with pyruvate, the second substrate of the reaction. The presence of two distinct iron-sulfur clusters on TYW1 is reminiscent of MiaB, another tRNA-modifying metalloenzyme whose active form was shown to bind two iron-sulfur clusters. A possible role for the second [4Fe-4S] cluster in the enzyme activity is discussed.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/genética , Carboxiliasas/fisiología , Oxidorreductasas/fisiología , Pyrococcus abyssi/enzimología , Proteínas de Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Proteínas Arqueales/fisiología , Carboxiliasas/genética , Catálisis , Cromatografía Líquida de Alta Presión , Clonación Molecular , Análisis por Conglomerados , Cisteína/genética , Espectroscopía de Resonancia por Spin del Electrón , Guanosina/análogos & derivados , Guanosina/química , Proteínas Hierro-Azufre/química , Espectrometría de Masas/métodos , Modelos Químicos , Datos de Secuencia Molecular , Oxidorreductasas/genética , Pyrococcus abyssi/genética , Ácido Pirúvico/química , ARN de Transferencia/metabolismo , S-Adenosilmetionina/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Rayos Ultravioleta
8.
Biochim Biophys Acta ; 1824(11): 1223-30, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22178611

RESUMEN

Over the past 10 years, considerable progress has been made in our understanding of the mechanistic enzymology of the Radical-SAM enzymes. It is now clear that these enzymes appear to be involved in a remarkably wide range of chemically challenging reactions. This review article highlights mechanistic and structural aspects of the methylthiotransferases (MTTases) sub-class of the Radical-SAM enzymes. The mechanism of methylthio insertion, now observed to be performed by three different enzymes is an exciting unsolved problem. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Metiltransferasas/metabolismo , S-Adenosilmetionina/metabolismo , Sulfurtransferasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Radicales Libres/química , Radicales Libres/metabolismo , Humanos , Proteínas Hierro-Azufre/química , Metiltransferasas/química , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , S-Adenosilmetionina/química , Sulfurtransferasas/química
9.
Curr Opin Struct Biol ; 20(6): 684-92, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20951571

RESUMEN

Proteins and RNA molecules enjoy a variety of chemically complex post-translational and post-transcriptional modifications. The chemistry at work in these reactions, which was considered to be exclusively ionic in nature has recently been shown to depend on radical mechanisms in some cases. The overwhelming majority of these radical-based reactions are catalyzed by 'Radical-SAM' enzymes. This review article highlights mechanistic and structural aspects of this class of reactions and indicates important research directions to be addressed.


Asunto(s)
Enzimas/metabolismo , Radicales Libres/metabolismo , Proteínas/metabolismo , ARN/metabolismo , S-Adenosilmetionina/metabolismo , Secuencia de Aminoácidos , Enzimas/química , Humanos , Proteínas/química , ARN/química
10.
J Biol Chem ; 285(37): 28425-33, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20584901

RESUMEN

Bacterial and eukaryotic transfer RNAs have been shown to contain hypermodified adenosine, 2-methylthio-N(6)-threonylcarbamoyladenosine, at position 37 (A(37)) adjacent to the 3'-end of the anticodon, which is essential for efficient and highly accurate protein translation by the ribosome. Using a combination of bioinformatic sequence analysis and in vivo assay coupled to HPLC/MS technique, we have identified, from distinct sequence signatures, two methylthiotransferase (MTTase) subfamilies, designated as MtaB in bacterial cells and e-MtaB in eukaryotic and archaeal cells. Both subfamilies are responsible for the transformation of N(6)-threonylcarbamoyladenosine into 2-methylthio-N(6)-threonylcarbamoyladenosine. Recently, a variant within the human CDKAL1 gene belonging to the e-MtaB subfamily was shown to predispose for type 2 diabetes. CDKAL1 is thus the first eukaryotic MTTase identified so far. Using purified preparations of Bacillus subtilis MtaB (YqeV), a CDKAL1 bacterial homolog, we demonstrate that YqeV/CDKAL1 enzymes, as the previously studied MTTases MiaB and RimO, contain two [4Fe-4S] clusters. This work lays the foundation for elucidating the function of CDKAL1.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Bacterianas/química , Quinasa 5 Dependiente de la Ciclina/química , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , ARN de Transferencia/química , Sulfurtransferasas/química , Treonina/análogos & derivados , Adenosina/química , Adenosina/genética , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Archaea/enzimología , Bacillus subtilis/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Análisis de Secuencia de Proteína , Sulfurtransferasas/genética , Sulfurtransferasas/metabolismo , Treonina/química , Treonina/genética , Treonina/metabolismo , ARNt Metiltransferasas
11.
J Biol Chem ; 285(8): 5792-801, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20007320

RESUMEN

Post-translational modifications of ribosomal proteins are important for the accuracy of the decoding machinery. A recent in vivo study has shown that the rimO gene is involved in generation of the 3-methylthio derivative of residue Asp-89 in ribosomal protein S12 (Anton, B. P., Saleh, L., Benner, J. S., Raleigh, E. A., Kasif, S., and Roberts, R. J. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 1826-1831). This reaction is formally identical to that catalyzed by MiaB on the C2 of adenosine 37 near the anticodon of several tRNAs. We present spectroscopic evidence that Thermotoga maritima RimO, like MiaB, contains two [4Fe-4S] centers, one presumably bound to three invariant cysteines in the central radical S-adenosylmethionine (AdoMet) domain and the other to three invariant cysteines in the N-terminal UPF0004 domain. We demonstrate that holo-RimO can specifically methylthiolate the aspartate residue of a 20-mer peptide derived from S12, yielding a mixture of mono- and bismethylthio derivatives. Finally, we present the 2.0 A crystal structure of the central radical AdoMet and the C-terminal TRAM (tRNA methyltransferase 2 and MiaB) domains in apo-RimO. Although the core of the open triose-phosphate isomerase (TIM) barrel of the radical AdoMet domain was conserved, RimO showed differences in domain organization compared with other radical AdoMet enzymes. The unusually acidic TRAM domain, likely to bind the basic S12 protein, is located at the distal edge of the radical AdoMet domain. The basic S12 protein substrate is likely to bind RimO through interactions with both the TRAM domain and the concave surface of the incomplete TIM barrel. These biophysical results provide a foundation for understanding the mechanism of methylthioation by radical AdoMet enzymes in the MiaB/RimO family.


Asunto(s)
Procesamiento Proteico-Postraduccional/fisiología , Proteínas Ribosómicas/metabolismo , S-Adenosilmetionina/metabolismo , Sulfurtransferasas/metabolismo , Thermotoga maritima/enzimología , Cristalografía por Rayos X , Estructura Terciaria de Proteína , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , S-Adenosilmetionina/química , S-Adenosilmetionina/genética , Relación Estructura-Actividad , Sulfurtransferasas/química , Sulfurtransferasas/genética , Thermotoga maritima/genética
12.
J Biol Inorg Chem ; 14(6): 923-33, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19381696

RESUMEN

Strict and facultative anaerobes depend on a class III ribonucleotide reductase for their growth. These enzymes are the sole cellular catalysts for de novo biosynthesis of the deoxyribonucleotides needed for DNA chain elongation and repair. In its active form, the class III ribonucleotide reductase from Escherichia coli contains a free radical located on the G681 residue which is essential for the activation of the ribonucleotide substrate toward its reduction. The 3D structure of the homologous enzyme from bacteriophage T4 has revealed the presence of a metal center bound to four conserved cysteine residues. In this report we identify the metal of the E. coli enzyme as Zn. We show that the presence of Zn in this site protects the protein from proteolysis and prevents the formation of disulfide bridges within it. Finally, we show with the fully Zn-loaded reductase that thioredoxin or small thiols are dispensable for the formation of the glycyl radical. However, they are necessary for obtaining high turnover numbers, suggesting that they intervene in radical transfer steps subsequent to the formation of the glycyl radical.


Asunto(s)
Escherichia coli/enzimología , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Zinc , Anaerobiosis , Sitios de Unión , Disulfuros/química , Disulfuros/metabolismo , Estabilidad de Enzimas , Radicales Libres/metabolismo , Holoenzimas/metabolismo , Especificidad por Sustrato , Compuestos de Sulfhidrilo/metabolismo
14.
Trends Biochem Sci ; 29(5): 243-9, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15130560

RESUMEN

S-adenosylmethionine (SAM or AdoMet) is a biological sulfonium compound known as the major biological methyl donor in reactions catalyzed by methyltransferases. SAM is also used as a source of methylene groups (in the synthesis of cyclopropyl fatty acids), amino groups (in the synthesis of 7,8-diaminoperlagonic acid, a precursor of biotin), ribosyl groups (in the synthesis of epoxyqueuosine, a modified nucleoside in tRNAs) and aminopropyl groups (in the synthesis of ethylene and polyamines). Even though the mechanism of most of these reactions has not been extensively characterized, it is likely that the chemistry at work is mainly driven by the electrophilic character of the carbon centers that are adjacent to the positively charged sulfur atom of SAM. In addition, SAM, upon one-electron reduction, is a source of 5'-deoxyadenosyl radicals, which initiate many metabolic reactions and biosynthetic pathways by hydrogen-atom abstraction. SAM presents a unique situation in which all constituent parts have a chemical use.


Asunto(s)
S-Adenosilmetionina/metabolismo , Uridina/análogos & derivados , 4-Butirolactona/análogos & derivados , 4-Butirolactona/biosíntesis , Acetiltransferasas/metabolismo , Aminoácidos Cíclicos/biosíntesis , Aminoácidos Diaminos/biosíntesis , Animales , Ciclopropanos , Ácidos Grasos/biosíntesis , Humanos , Transferasas Intramoleculares/metabolismo , Modelos Químicos , Nucleósido Q/biosíntesis , Ribonucleótido Reductasas/metabolismo , Espermidina/biosíntesis , Uridina/biosíntesis
15.
Inorg Chem ; 43(6): 2105-13, 2004 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-15018534

RESUMEN

The preparations, X-ray structures, and detailed physical characterization are presented for new complexes involving an iron(II) center, a tetraimidazole ligand (TIM), and different carboxylates. [Fe(TIM)(C(6)H(5)CH(2)CO(2))](ClO(4)) (1) crystallizes in the Pbca space group with a = 10.8947(13), b = 20.343(2), and c = 22.833(3) A, Z = 8, and V = 5060.6(11) A(3). [Fe(TIM)(CH(3)CO(2))](ClO(4)) (2) crystallizes in the Ia space group with a = 17.117(2), b = 10.3358(12), and c = 25.658(3) A, beta = 90.301(13) degrees, Z = 8, and V = 4539.5(9) A(3). In both structures, the iron(II) is hexacoordinated to the four N(imidazole) donors of the TIM ligand and the two O donors of a bidentate carboxylate. The flexibility of the carboxylate bidentate coordination, symmetrical or more or less asymmetrical, associated with the steric demand of the TIM ligand results in a remarkable versatility of the Fe(II)N(4)O(2) coordination geometry. The diversity in carboxylate bidentate coordination modes has allowed us to clearly show the importance of the structural and electronic effects, through IR and Mössbauer spectroscopy, of this apparently tenuous carboxylate shift. Comparison of the structural and Mössbauer properties of these complexes with the non-heme ferrous site of photosynthetic systems (i) shows that the metric parameters of site 2b, including the symmetrically chelated bidentate carboxylate, are closer to those of the non-heme ferrous site in the bacterial reaction centers of Rhodopseudomonas viridis and R. sphaeroides and (ii) suggests that the ligand environment of the non-heme ferrous center of PS 2 is close to the axially distorted octahedral symmetry resulting from an asymmetrical bidentate coordination of the -CO(2) motif, as in complex 1.


Asunto(s)
Ácidos Carboxílicos/química , Compuestos Ferrosos/química , Imidazoles/química , Animales , Chlamydomonas reinhardtii/química , Cristalografía por Rayos X , Ligandos , Magnetismo , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Compuestos Organometálicos/química , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/química , Rhodopseudomonas/química , Espectroscopía de Mossbauer , Temperatura
17.
Proc Natl Acad Sci U S A ; 100(7): 3826-31, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12655046

RESUMEN

A Zn(Cys)(4) center has been found in the C-terminal region of the crystal structure of the anaerobic class III ribonucleotide reductase (RNR) from bacteriophage T4. The metal center is structurally related to the zinc ribbon motif and to rubredoxin and rubrerythrin. Mutant enzymes of the homologous RNR from Escherichia coli, in which the coordinating cysteines, conserved in almost all known class III RNR sequences, have been mutated into alanines, are shown to be inactive as the result of their inability to generate the catalytically essential glycyl radical. The possible roles of the metal center are discussed in relationship to the currently proposed reaction mechanism for generation of the glycyl radical in class III RNRs.


Asunto(s)
Escherichia coli/enzimología , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Secuencia de Aminoácidos , Anaerobiosis , Bacteriófago T4/enzimología , Secuencia de Bases , Sitios de Unión , Secuencia de Consenso , Cristalografía por Rayos X/métodos , Cartilla de ADN , Espectroscopía de Resonancia por Spin del Electrón/métodos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
18.
J Am Chem Soc ; 125(1): 38-9, 2003 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-12515500

RESUMEN

This work shows that very high-field EPR spectroscopy allows a rather accurate determination of the g-tensor of protein radicals, including C-centered ones, and thus may be used as a probe for distinguishing a tyrosyl-, a glycyl-, or a tryptophanyl-radical. In this paper, we report the first complete analysis of the g-tensor of glycyl radical enzymes (anaerobic ribonucleotide reductase, pyruvate formate lyase, and benzylsuccinate synthase), thus providing new information on their EPR properties. Because the g-anisotropy is small, the complete resolution of the g-tensor could be only obtained at very high field (18.8 T).


Asunto(s)
Glicina/química , Ribonucleótido Reductasas/química , Anisotropía , Espectroscopía de Resonancia por Spin del Electrón/métodos , Radicales Libres/química
19.
FEBS Lett ; 532(3): 465-8, 2002 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-12482614

RESUMEN

Biotin synthase (BioB), an iron-sulfur enzyme, catalyzes the last step of the biotin biosynthesis pathway. The reaction consists in the introduction of a sulfur atom into two non-activated C-H bonds of dethiobiotin. Substrate radical activation is initiated by the reductive cleavage of S-adenosylmethionine (AdoMet) into a 5'-deoxyadenosyl radical. The recently described pyridoxal 5'-phosphate-bound enzyme was used to show that only one molecule of AdoMet, and not two, is required for the formation of one molecule of biotin. Furthermore 5'-deoxyadenosine, a product of the reaction, strongly inhibited biotin formation, an observation that may explain why BioB is not able to make more than one turnover. However this enzyme inactivation is not irreversible.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Escherichia coli , Escherichia coli/enzimología , Sulfurtransferasas/química , Alanina/metabolismo , Proteínas Bacterianas/metabolismo , Biotina/metabolismo , Desoxiadenosinas/metabolismo , Proteínas Hierro-Azufre/química , Metionina/metabolismo , Modelos Químicos , Unión Proteica , Sulfurtransferasas/metabolismo , Factores de Tiempo
20.
Artículo en Inglés | MEDLINE | ID: mdl-12206460

RESUMEN

For growth under oxygen-free atmosphere, some strict or facultative anaerobes depend on a class III ribonucleotide reductase for the synthesis of deoxyribonucleotides, the DNA precursors. Prototypes for this class of enzymes are ribonucleotide reductases from Escherichia coli and bacteriophage T4. This review article describes their structural and mechanistic properties as well as their complex allosteric regulation. Their evolutionnary relationship to class I and class II ribonucleotide reductases is also discussed.


Asunto(s)
Proteínas Bacterianas , Desoxirribonucleótidos/biosíntesis , Proteínas de Escherichia coli , Ribonucleótido Reductasas/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Anaerobiosis , Bacterias Anaerobias , ADN , Regulación de la Expresión Génica , Datos de Secuencia Molecular , ARN , Ribonucleótido Reductasas/genética , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA