Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Eng ; 70(12): 3312-3320, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37262114

RESUMEN

Genu recurvatum, or knee hyperextension, is a complex gait pattern with a variety of etiologies, and is often connected with knee weakness, lack of motor control, and spasticity. Because of the atypical forces placed on the soft tissues, early treatment or prevention of knee hyperextension may help prevent further degradation of the knee joint. In this study, we assessed the feasibility of a knee exoskeleton to mitigate hyperextension and increase swing range of motion in five children/adolescents who presented with unilateral genu recurvatum. Over the course of three visits, each participant practiced walking with the exoskeleton, which provided torque assistance during both stance and swing based on an impedance control law. In final validation trials, the exoskeleton was effective in reducing knee hyperextension (0.2 ± 4.7° average peak knee extension without exo to 9.9 ± 10.3° with exo) and improving swing range of motion by 14.0 ± 4.5° increase on average. However, while the exoskeleton was effective in normalizing the kinematics, it did not lead to improved spatio-temporal asymmetry measures. This work showcases a promising potential application of a robotic knee exoskeleton for improving the kinematic characteristics of genu recurvatum gait.


Asunto(s)
Dispositivo Exoesqueleto , Humanos , Niño , Adolescente , Estudios de Factibilidad , Articulación de la Rodilla , Rodilla , Caminata , Marcha , Fenómenos Biomecánicos , Rango del Movimiento Articular
2.
Ann Biomed Eng ; 50(6): 716-727, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35344119

RESUMEN

Tibiofemoral compression forces present during locomotion can result in high stress and risk damage to the knee. Powered assistance using a knee exoskeleton may reduce the knee load by reducing the work required by the muscles. However, the exact effect of assistance on the tibiofemoral force is unknown. The goal of this study was to investigate the effect of knee extension assistance during the early stance phase on the tibiofemoral force. Nine able-bodied adults walked on an inclined treadmill with a bilateral knee exoskeleton with assistance and with no assistance. Using an EMG-informed neuromusculoskeletal model, muscle forces were estimated, then utilized to estimate the tibiofemoral contact force. Results showed a 28% reduction in the knee moment, which resulted in approximately a 15% decrease in knee extensor muscle activation and a 20% reduction in subsequent muscle force, leading to a significant 10% reduction in peak and 9% reduction in average tibiofemoral contact force during the early stance phase (p < 0.05). The results indicate the tibiofemoral force is highly dependent on the knee kinetics and quadricep muscle activation due to their influence on knee extensor muscle forces, the primary contributor to the knee load.


Asunto(s)
Dispositivo Exoesqueleto , Procedimientos Quirúrgicos Robotizados , Adulto , Fenómenos Biomecánicos , Marcha/fisiología , Humanos , Rodilla , Articulación de la Rodilla/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA