Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Biotechnol ; 42(2): 137-140, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38114392

RESUMEN

Incubators and accelerators catalyze the launch of life science startups and have evolved from simple facilities to vibrant ecosystems offering research infrastructure, programs, and funding. Analysis of financing activities indicates the outperformance of incubator companies relative to accelerators in fundraising, mergers and acquisitions (M&As), and initial public offerings (IPOs), attributed to extended interactions with investors and peers.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Ecosistema , Financiación del Capital , Inversiones en Salud
2.
Trends Biotechnol ; 41(10): 1216-1219, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37236813

RESUMEN

Chimeric antigen receptor T cells (CAR-T) have demonstrated their potential to revolutionize cancer treatment. However, manufacturing remains a challenge. Multiple manufacturing innovations [e.g., vector and gene engineering, process improvements, hardware innovation, digital innovation, and point-of-care (POC) manufacturing] have the potential to help realize the full potential of CAR-T therapies.


Asunto(s)
Receptores Quiméricos de Antígenos , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva , Tratamiento Basado en Trasplante de Células y Tejidos , Ingeniería Genética
3.
J Control Release ; 191: 71-81, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24848744

RESUMEN

To translate recent advances in induced pluripotent stem cell biology to clinical regenerative medicine therapies, new strategies to control the co-delivery of cells and growth factors are needed. Building on our previous work designing Mixing-Induced Two-Component Hydrogels (MITCHs) from engineered proteins, here we develop protein-polyethylene glycol (PEG) hybrid hydrogels, MITCH-PEG, which form physical gels upon mixing for cell and growth factor co-delivery. MITCH-PEG is a mixture of C7, which is a linear, engineered protein containing seven repeats of the CC43 WW peptide domain (C), and 8-arm star-shaped PEG conjugated with either one or two repeats of a proline-rich peptide to each arm (P1 or P2, respectively). Both 20kDa and 40kDa star-shaped PEG variants were investigated, and all four PEG-peptide variants were able to undergo a sol-gel phase transition when mixed with the linear C7 protein at constant physiological conditions due to noncovalent hetero-dimerization between the C and P domains. Due to the dynamic nature of the C-P physical crosslinks, all four gels were observed to be reversibly shear-thinning and self-healing. The P2 variants exhibited higher storage moduli than the P1 variants, demonstrating the ability to tune the hydrogel bulk properties through a biomimetic peptide-avidity strategy. The 20kDa PEG variants exhibited slower release of encapsulated vascular endothelial growth factor (VEGF), due to a decrease in hydrogel mesh size relative to the 40kDa variants. Human induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs) adopted a well-spread morphology within three-dimensional MITCH-PEG cultures, and MITCH-PEG provided significant protection from cell damage during ejection through a fine-gauge syringe needle. In a mouse hindlimb ischemia model of peripheral arterial disease, MITCH-PEG co-delivery of hiPSC-ECs and VEGF was found to reduce inflammation and promote muscle tissue regeneration compared to a saline control.


Asunto(s)
Células Progenitoras Endoteliales/trasplante , Células Madre Pluripotentes Inducidas/trasplante , Isquemia/terapia , Músculo Esquelético/irrigación sanguínea , Polietilenglicoles/química , Proteínas Recombinantes/química , Andamios del Tejido , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Animales , Forma de la Célula , Células Cultivadas , Química Farmacéutica , Preparaciones de Acción Retardada , Modelos Animales de Enfermedad , Módulo de Elasticidad , Células Progenitoras Endoteliales/metabolismo , Miembro Posterior , Humanos , Hidrogeles , Células Madre Pluripotentes Inducidas/metabolismo , Inyecciones Intramusculares , Isquemia/patología , Isquemia/fisiopatología , Cinética , Masculino , Ratones Endogámicos NOD , Ratones SCID , Peso Molecular , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Necrosis , Unión Proteica , Regeneración/efectos de los fármacos , Solubilidad , Tecnología Farmacéutica/métodos , Factor A de Crecimiento Endotelial Vascular/química , Viscosidad
4.
Tissue Eng Part A ; 20(15-16): 2102-14, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24490588

RESUMEN

Peptide mimics of growth factors represent an emerging class of therapeutic drugs due to high biological specificity and relative ease of synthesis. However, maintaining efficacious therapeutic dosage at the therapy site has proven challenging owing to poor intestinal permeability and short circulating half-lives in the blood stream. In this work, we present the affinity immobilization and controlled release of QK, a vascular endothelial growth factor (VEGF) mimetic peptide, from an injectable mixing-induced two-component hydrogel (MITCH). The MITCH system is crosslinked by reversible interactions between WW domains and complementary proline-rich peptide modules. Fusion of the QK peptide to either one or two units of the proline-rich sequence creates bifunctional peptide conjugates capable of specific binding to MITCH while preserving their angiogenic bioactivity. Presenting two repeats of the proline-rich sequence increases the binding enthalpy 2.5 times due to avidity effects. Mixing of the drug conjugates with MITCH components results in drug encapsulation and extended release at rates consistent with the affinity immobilization strength. Human umbilical vein endothelial cells (HUVECs) treated with the soluble drug conjugates exhibit morphogenetic events of VEGF receptor 2 signal transduction followed by cell migration and organization into networks characteristic of early angiogenesis. In a three-dimensional model where HUVECs were cultured as spheroids in a matrix of collagen and fibronectin, injection of drug-releasing MITCH resulted in significantly more cell outgrowth than drugs injected in saline. This ability to sustain local drug availability is ideal for therapeutic angiogenesis applications, where spatiotemporal control over drug distribution is a key requirement for clinical success.


Asunto(s)
Proteínas Angiogénicas/farmacología , Hidrogeles/química , Neovascularización Fisiológica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Preparaciones de Acción Retardada , Difusión , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inyecciones , Fenotipo , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Adv Healthc Mater ; 2(3): 428-32, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23184882

RESUMEN

Improved retention of transplanted stem cells is achieved through minimally invasive delivery in MITCH, a mixing-induced two-component hydrogel that was engineered to possess shear-thinning and self-healing thixotropic properties. MITCH, an ideal injectable cell-delivery vehicle, supports 3D stem-cell culture, resulting in high cell viability and physiologically relevant cell morphology.


Asunto(s)
Tejido Adiposo/citología , Biopolímeros/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/química , Trasplante de Células Madre/métodos , Células Madre/citología , Andamios del Tejido , Animales , Biopolímeros/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Inyecciones , Masculino , Ensayo de Materiales , Ratones , Ratones Desnudos , Ratones Transgénicos , Proteínas Recombinantes/metabolismo , Células Madre/efectos de los fármacos , Ingeniería de Tejidos
6.
Tissue Eng Part A ; 18(7-8): 806-15, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22011213

RESUMEN

Cell transplantation is a promising therapy for a myriad of debilitating diseases; however, current delivery protocols using direct injection result in poor cell viability. We demonstrate that during the actual cell injection process, mechanical membrane disruption results in significant acute loss of viability at clinically relevant injection rates. As a strategy to protect cells from these damaging forces, we hypothesize that cell encapsulation within hydrogels of specific mechanical properties will significantly improve viability. We use a controlled in vitro model of cell injection to demonstrate success of this acute protection strategy for a wide range of cell types including human umbilical vein endothelial cells (HUVEC), human adipose stem cells, rat mesenchymal stem cells, and mouse neural progenitor cells. Specifically, alginate hydrogels with plateau storage moduli (G') ranging from 0.33 to 58.1 Pa were studied. A compliant crosslinked alginate hydrogel (G'=29.6 Pa) yielded the highest HUVEC viability, 88.9% ± 5.0%, while Newtonian solutions (i.e., buffer only) resulted in 58.7% ± 8.1% viability. Either increasing or decreasing the hydrogel storage modulus reduced this protective effect. Further, cells within noncrosslinked alginate solutions had viabilities lower than media alone, demonstrating that the protective effects are specifically a result of mechanical gelation and not the biochemistry of alginate. Experimental and theoretical data suggest that extensional flow at the entrance of the syringe needle is the main cause of acute cell death. These results provide mechanistic insight into the role of mechanical forces during cell delivery and support the use of protective hydrogels in future clinical stem cell injection studies.


Asunto(s)
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células Madre/citología , Ingeniería de Tejidos/métodos , Supervivencia Celular/fisiología , Células Cultivadas , Humanos
7.
Biomacromolecules ; 12(10): 3406-11, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21861461

RESUMEN

Predictable tuning of bulk mechanics from the molecular level remains elusive in many physical hydrogel systems because of the reliance on nonspecific and nonstoichiometric chain interactions for network formation. We describe a mixing-induced two-component hydrogel (MITCH) system, in which network assembly is driven by specific and stoichiometric peptide-peptide binding interactions. By integrating protein science methodologies with a simple polymer physics model, we manipulate the polypeptide binding interactions and demonstrate the direct ability to predict the resulting effects on network cross-linking density, sol-gel phase behavior, and gel mechanics.


Asunto(s)
Materiales Biocompatibles/química , Ingeniería Biomédica/métodos , Hidrogeles/análisis , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/química , Materiales Biocompatibles/metabolismo , Clonación Molecular , Reactivos de Enlaces Cruzados/química , Elasticidad , Escherichia coli , Hidrogeles/química , Hidrogeles/metabolismo , Transición de Fase , Plásmidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reología , Temperatura , Transformación Bacteriana , Viscosidad
8.
Proc Natl Acad Sci U S A ; 106(52): 22067-72, 2009 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-20007785

RESUMEN

Current protocols to encapsulate cells within physical hydrogels require substantial changes in environmental conditions (pH, temperature, or ionic strength) to initiate gelation. These conditions can be detrimental to cells and are often difficult to reproduce, therefore complicating their use in clinical settings. We report the development of a two-component, molecular-recognition gelation strategy that enables cell encapsulation without environmental triggers. Instead, the two components, which contain multiple repeats of WW and proline-rich peptide domains, undergo a sol-gel phase transition upon simple mixing and hetero-assembly of the peptide domains. We term these materials mixing-induced, two-component hydrogels. Our results demonstrate use of the WW and proline-rich domains in protein-engineered materials and expand the library of peptides successfully designed into engineered proteins. Because both of these association domains are normally found intracellularly, their molecular recognition is not disrupted by the presence of additional biomolecules in the extracellular milieu, thereby enabling reproducible encapsulation of multiple cell types, including PC-12 neuronal-like cells, human umbilical vein endothelial cells, and murine adult neural stem cells. Precise variations in the molecular-level design of the two components including (i) the frequency of repeated association domains per chain and (ii) the association energy between domains enable tailoring of the hydrogel viscoelasticity to achieve plateau shear moduli ranging from approximately 9 to 50 Pa. Because of the transient physical crosslinks that form between association domains, these hydrogels are shear-thinning, injectable, and self-healing. Neural stem cells encapsulated in the hydrogels form stable three-dimensional cultures that continue to self-renew, differentiate, and sprout extended neurites.


Asunto(s)
Materiales Biocompatibles/síntesis química , Trasplante de Células/métodos , Hidrogeles/síntesis química , Ingeniería de Proteínas/métodos , Células Madre Adultas/citología , Células Madre Adultas/trasplante , Animales , Materiales Biocompatibles/química , Células Cultivadas , Elasticidad , Células Endoteliales/citología , Células Endoteliales/trasplante , Humanos , Hidrogeles/química , Ensayo de Materiales , Ratones , Neuronas/citología , Células PC12 , Dominios y Motivos de Interacción de Proteínas , Ratas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Reología , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...