Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(23): 10726-10736, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38787891

RESUMEN

The ternary rare-earth sulfides RE2SnS5 (RE = La-Nd) and the partial solid solutions RE2Sn(S1-xSex)5 (RE = La, Ce; x = 0-0.8) were prepared in the form of polycrystalline samples by reaction of the elements at 900 °C and as single crystals in the presence of KBr flux. They adopt the La2SnS5-type structure (orthorhombic, space group Pbam, Z = 2) consisting of chains of edge-sharing SnCh6 octahedra separated by RE atoms. Although the cell parameters evolve smoothly in RE2Sn(S1-xSex)5, detailed structural analysis by single-crystal X-ray diffraction revealed a pronounced preference for the Se atoms to occupy two out of the three chalcogen sites, which offers a rationalization for why the all-selenide end-members RE2SnSe5 do not form. Solid-state 119Sn NMR spectra confirmed the nonrandom distribution of SnS6-nSen local environments, which could be resolved into individual resonances. The Raman spectra of RE2SnS5 compounds show an intense peak at 307-320 cm-1 assigned to a symmetric A1g mode, which is dominated by Sn-S bonds; the Raman peak intensities varied with Se substitution in La2Sn(S1-xSex)5. Optical diffuse reflectance spectra, band structure calculations, and electrochemical impedance spectra indicated that these compounds are narrow band gap semiconductors; the optical band gaps are insensitive to RE substitution in RE2SnS5 (0.7 eV) but they gradually decrease with greater Se substitution in RE2Sn(S1-xSex)5 (0.7-0.4 eV).

2.
Inorg Chem ; 63(13): 5972-5981, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38502785

RESUMEN

Laves phases AB2 form the most abundant group of intermetallic compounds, consisting of combinations of larger electropositive metals A with smaller metals B. Many practical applications of Laves phases depend on the ability to tune their physical properties through appropriate substitution of either the A or B component. Although simple geometrical and electronic factors have long been thought to control the formation of Laves phases, no single factor alone can make predictions accurately. Several machine learning models have been developed to discover new Laves phases, including variations caused by solid solubility, using elemental properties solely on the basis of chemical composition. These models were trained on a data set comprising about 3700 entries of experimentally known phases AB2 with Laves and non-Laves structures. Among these models, a decision tree algorithm gave very good performance (average recall of 95%, precision of 94%, and accuracy of 96% on the test set) by using only a small set of descriptors, the most important of which relates to the electron density at the boundary of the Wigner-Seitz cell for the B component. This model provides guidance for new experiments by making predictions on >400000 candidates very quickly. A chemically unintuitive candidate Cd(Cu1-xSbx)2 with a limited solid solubility of Sb for Cu was targeted; it was successfully synthesized and confirmed to adopt a cubic MgCu2-type Laves structure.

3.
Commun Chem ; 6(1): 75, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076629

RESUMEN

Aliovalent substitution of the B component in ABX3 metal halides has often been proposed to modify the band gap and thus the photovoltaic properties, but details about the resulting structure have remained largely unknown. Here, we examine these effects in Bi-substituted CsSnBr3. Powder X-ray diffraction (XRD) and solid-state 119Sn, 133Cs and 209Bi nuclear magnetic resonance (NMR) spectroscopy were carried out to infer how Bi substitution changes the structure of these compounds. The cubic perovskite structure is preserved upon Bi-substitution, but with disorder in the B site occurring at the atomic level. Bi atoms are randomly distributed as they substitute for Sn atoms with no evidence of Bi segregation. The absorption edge in the optical spectra shifts from 1.8 to 1.2 eV upon Bi-substitution, maintaining a direct band gap according to electronic structure calculations. It is shown that Bi-substitution improves resistance to degradation by inhibiting the oxidation of Sn.

4.
Inorg Chem ; 62(19): 7491-7502, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116178

RESUMEN

Complete substitution of Li atoms for Ag atoms in AgGaSe2 and AgInSe2 was achieved, resulting in the solid solutions LixAg1-xGaSe2 and LixAg1-xInSe2. The detailed crystal structures were determined by single-crystal X-ray diffraction and solid-state 7Li nuclear magnetic resonance spectroscopy, which confirm that Li atoms occupy unique sites and disorder only with Ag atoms. The tetragonal CuFeS2-type structure (space group I4̅2d) was retained within the entirety of the Ga-containing solid solution LixAg1-xGaSe2, which is noteworthy because the end-member LiGaSe2 normally adopts the orthorhombic ß-NaFeO2-type structure (space group Pna21). These structures are closely related, being superstructures of the cubic sphalerite and hexagonal wurtzite prototypes adopted by diamond-like semiconductors. For the In-containing solid solution LixAg1-xInSe2, the structure transforms from the tetragonal to orthorhombic forms as the Li content increases past x = 0.50. The optical band gaps increase gradually with higher Li content, from 1.8 to 3.4 eV in LixAg1-xGaSe2 and from 1.2 to 2.5 eV in LixAg1-xInSe2, enabling control to desired values, while the second harmonic generation responses become stronger or are similar to those of benchmark infrared nonlinear optical materials such as AgGaS2. All members of these solid solutions remain congruently melting at accessible temperatures between 800 and 900 °C. Electronic structure calculations support the linear trends seen in the optical band gaps and confirm the mostly ionic character present in Li-Se bonds, in contrast to the more covalent character in Ga-Se or In-Se bonds.

5.
Inorg Chem ; 57(20): 12576-12587, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30281284

RESUMEN

In this work, we have discovered the anisotropic near-zero thermal expansion (NZTE) behavior in a family of compounds REAg xGa4- x ( RE = La-Nd, Sm, Eu, and Yb). The compounds adopt the CeAl2Ga2 structure type and were obtained as single crystals in high yield by metal flux growth technique using gallium as active flux. Temperature-dependent single crystal X-ray diffraction suggests that all the compounds exhibit near zero thermal expansion along c direction in the temperature range of 100-450 K. Temperature-dependent X-ray absorption near-edge spectroscopic study confirmed ZTE behavior is due to the geometrical features associated within the crystal structure. The anisotropic NZTE behavior was further established by anisotropic magnetic measurements on selected single crystals. The atomic displacement parameters, apparent bond lengths, bond angles, and structural distortion with respect to the temperature reveal that geometric features associated with the structural distortion cause the anisotropic NZTE along c-direction. The preliminary magnetic studies suggest all the compounds are paramagnetic at room temperature except LaAgGa3. Electrical resistivity study reveals that compounds from this series are metallic in nature.

6.
Inorg Chem ; 57(2): 590-601, 2018 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-29272117

RESUMEN

A family of five different three-dimensional polyoxometalate (POM) based supramolecular hybrids were synthesized by a hydrothermal route under different pH using a hydrolyzable naphthalene diimide ligand. The mechanism of crystallographic phase variation of the POM-amino pyridine hybrids under different pH was studied through controlled experiments where the final hydrolyzed products were analyzed through NMR and single crystal X-ray diffraction. Different pH conditions led to variation in the extent of protonation and hydrolyzation of the ligand, yielding different phases. All of these were identified, and the structures of the supramolecular hybrids were characterized extensively. Mechanistic study proved that only the reaction conditions are responsible for the hydrolysis of the ligand and the in situ generated POM species do not have any role in it. Magnetic measurements confirmed the hexavalent oxidation states of the transition metal center (Mo) in the POM. Optical band gap measurements revealed that these hybrids are semiconducting in nature. Two of the compounds were studied for hydrogen peroxide mediated selective oxidation catalysis of small organic molecules and found to exhibit very good activity with high percentage of selectivity for the desired products of industrial importance.

7.
ACS Appl Mater Interfaces ; 9(18): 15373-15382, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28425705

RESUMEN

In this work, we present a facile aqueous-phase synthesis of a hybrid catalyst consisting of PtAu alloy supported on Bi2O3 microspheres. Multistep reduction of HAuCl4 and K2PtCl4 salts on Bi2O3 and subsequent annealing lead to the formation of this hybrid catalyst. To the best of our knowledge, this is the first report of using Bi2O3 as a catalyst support in fuel cell applications. The material was characterized by powder X-ray diffraction and various microscopic techniques. This composite showed remarkable activity as well as stability toward the electro-oxidation of ethanol in comparison to commercially available Pt/C. The order of the reactivity was found to be commercial Pt/C (50.4 mA/m2mgPt-1) < Pt/Bi2O3(10) (108 mA/m2mgPt-1) < PtAu/Bi2O3(10) (459 mA/m2mgPt-1). The enhancement in the activity can be explained through cooperative effects, namely, ligand effects of gold and Bi2O3 support, which helps in removing carbon monoxide molecules to avoid the poisoning of the Pt active sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA