Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pathol ; 261(1): 85-95, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37550827

RESUMEN

Club cells are a type of bronchiolar epithelial cell that serve a protective role in the lung and regenerate damaged lung epithelium. Single-cell RNA sequencing (scRNA-seq) of young adult human prostate and urethra identified cell populations in the prostatic urethra and collecting ducts similar in morphology and transcriptomic profile to lung club cells. We further identified club cell-like epithelial cells by scRNA-seq of prostate peripheral zone tissues. Here, we aimed to identify and spatially localize club cells in situ in the prostate, including in the peripheral zone. We performed chromogenic RNA in situ hybridization for five club cell markers (CP, LTF, MMP7, PIGR, SCGB1A1) in a series of (1) nondiseased organ donor prostate and (2) radical prostatectomy specimens from individuals with prostate cancer. We report that expression of club cell genes in the peripheral zone is associated with inflammation and limited to luminal epithelial cells classified as intermediate cells in proliferative inflammatory atrophy (PIA). Club-like cells were enriched in radical prostatectomy specimens compared to nondiseased prostates and associated with high-grade prostate cancer. We previously reported that luminal epithelial cells in PIA can rarely harbor oncogenic TMPRSS2:ERG (ERG+) gene fusions, and we now demonstrate that club cells are present in association with ERG+ PIA that is transitioning to early adenocarcinoma. Finally, prostate epithelial organoids derived from prostatectomy specimens demonstrate that club-like epithelial cells can be established in organoids and are sensitive to anti-androgen-directed treatment in vitro in terms of decreased androgen signaling gene expression signatures compared to basal or hillock cells. Overall, our study identifies a population of club-like cells in PIA and proposes that these cells play an analogous role to that of club cells in bronchiolar epithelium. Our results further suggest that inflammation drives lineage plasticity in the human prostate and that club cells in PIA may be prone to oncogenic transformation. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Adulto Joven , Humanos , Próstata/patología , Neoplasias de la Próstata/patología , Células Epiteliales/patología , Inflamación/patología , Atrofia/patología
2.
J Pathol ; 256(2): 149-163, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34652816

RESUMEN

Prostate cancer (PCa) remains a leading cause of cancer-related deaths in American men and treatment options for metastatic PCa are limited. There is a critical need to identify new mechanisms that contribute to PCa progression, that distinguish benign from lethal disease, and that have potential for therapeutic targeting. P2X4 belongs to the P2 purinergic receptor family that is commonly upregulated in cancer and is associated with poorer outcomes. We observed P2X4 protein expression primarily in epithelial cells of the prostate, a subset of CD66+ neutrophils, and most CD68+ macrophages. Our analysis of tissue microarrays representing 491 PCa cases demonstrated significantly elevated P2X4 expression in cancer- compared with benign-tissue spots, in prostatic intraepithelial neoplasia, and in PCa with ERG positivity or with PTEN loss. High-level P2X4 expression in benign tissues was likewise associated with the development of metastasis after radical prostatectomy. Treatment with the P2X4-specific agonist cytidine 5'-triphosphate (CTP) increased Transwell migration and invasion of PC3, DU145, and CWR22Rv1 PCa cells. The P2X4 antagonist 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) resulted in a dose-dependent decrease in viability of PC3, DU145, LNCaP, CWR22Rv1, TRAMP-C2, Myc-CaP, BMPC1, and BMPC2 cells and decreased DU145 cell migration and invasion. Knockdown of P2X4 attenuated growth, migration, and invasion of PCa cells. Finally, knockdown of P2X4 in Myc-CaP cells resulted in significantly attenuated subcutaneous allograft growth in FVB/NJ mice. Collectively, these data strongly support a role for the P2X4 purinergic receptor in PCa aggressiveness and identify P2X4 as a candidate for therapeutic targeting. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Antineoplásicos/farmacología , Benzodiazepinonas/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X4/efectos de los fármacos , Animales , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Terapia Molecular Dirigida , Invasividad Neoplásica , Células PC-3 , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Transducción de Señal , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34341114

RESUMEN

Prostate adenocarcinoma is the second most commonly diagnosed cancer in men worldwide, and the initiating factors are unknown. Oncogenic TMPRSS2:ERG (ERG+) gene fusions are facilitated by DNA breaks and occur in up to 50% of prostate cancers. Infection-driven inflammation is implicated in the formation of ERG+ fusions, and we hypothesized that these fusions initiate in early inflammation-associated prostate cancer precursor lesions, such as proliferative inflammatory atrophy (PIA), prior to cancer development. We investigated whether bacterial prostatitis is associated with ERG+ precancerous lesions in unique cases with active bacterial infections at the time of radical prostatectomy. We identified a high frequency of ERG+ non-neoplastic-appearing glands in these cases, including ERG+ PIA transitioning to early invasive cancer. These lesions were positive for ERG protein by immunohistochemistry and ERG messenger RNA by in situ hybridization. We additionally verified TMPRSS2:ERG genomic rearrangements in precursor lesions using tricolor fluorescence in situ hybridization. Identification of rearrangement patterns combined with whole-prostate mapping in three dimensions confirmed multiple (up to eight) distinct ERG+ precancerous lesions in infected cases. We further identified the pathogen-derived genotoxin colibactin as a potential source of DNA breaks in clinical cases as well as cultured prostate cells. Overall, we provide evidence that bacterial infections can initiate driver gene alterations in prostate cancer. In addition, our observations indicate that infection-induced ERG+ fusions are an early alteration in the carcinogenic process and that PIA may serve as a direct precursor to prostate cancer.


Asunto(s)
Infecciones Bacterianas/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/microbiología , Serina Endopeptidasas/genética , Atrofia , Infecciones Bacterianas/complicaciones , Infecciones Bacterianas/patología , Roturas del ADN , Humanos , Masculino , Fusión de Oncogenes , Péptidos/genética , Policétidos , Próstata/microbiología , Próstata/patología , Prostatectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Prostatitis/genética , Prostatitis/microbiología , Prostatitis/patología , Regulador Transcripcional ERG/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...