Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Genes Genomics ; 46(5): 531-539, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507111

RESUMEN

BACKGROUND: Biofilm development by bacteria is considered to be an essential stage in the bacterial infection. Acinetobacter nosocomialis is an important nosocomial pathogen causing a variety of human infections. However, characteristics and specific determinants of biofilm development have been poorly characterized in A. nosocomialis. OBJECTIVE: The aim of this study was to investigate the factors involved in the biofilm development by A. nosocomialis. METHODS: Library of random transposon mutants was constructed using the Tn5 mutagenesis. The mutant strains, in which the ability of biofilm formation was significantly impaired, were screened by gentian violet staining. The roles of BfmR and BfmS were determined by constructing a bfmR and bfmS deletion mutant and analyzing the effects of bfmR and bfmS mutation on the biofilm development and motility of A. nosocomialis. RESULTS: We identified a biofilm-defective mutant in which a transposon insertion inactivated an open reading frame encoding the BfmR in a two-component regulatory system consisting of BfmR and BfmS. The bfmR mutant revealed a significant reduction in biofilm formation and motility compared to wild-type strain. Deficiency in the biofilm formation and motility of the bfmR mutant was restored by single copy bfmR complementation. In contrast, the bfmS mutant had no effect on biofilm formation. CONCLUSION: A. nosocomialis has a two-component regulatory system, BfmRS. BfmR is a response regulator required for the initial attachment and maturation of biofilm during the biofilm development as well as the bacterial growth. BfmR could be a potential drug target for A. nosocomialis infection.


Asunto(s)
Acinetobacter , Humanos , Acinetobacter/genética , Biopelículas , Mutación
2.
Genes Genomics ; 46(4): 499-510, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453815

RESUMEN

BACKGROUND: The skin microbiome is essential in guarding against harmful pathogens and responding to environmental changes by generating substances useful in the cosmetic and pharmaceutical industries. Among these microorganisms, Streptococcus is a bacterial species identified in various isolation sources. In 2021, a strain of Streptococcus infantis, CX-4, was identified from facial skin and found to be linked to skin structure and elasticity. As the skin-derived strain differs from other S. infantis strains, which are usually of oral origin, it emphasizes the significance of bacterial variation by the environment. OBJECTIVE: This study aims to explore the unique characteristics of the CX-4 compared to seven oral-derived Streptococcus strains based on the Whole-Genome Sequencing data, focusing on its potential role in skin health and its possible application in cosmetic strategies. METHODS: The genome of the CX-4 strain was constructed using PacBio Sequencing, with the assembly performed using the SMRT protocol. Comparative whole-genome analysis was then performed with seven closely related strains, utilizing web-based tools like PATRIC, OrthoVenn3, and EggNOG-mapper, for various analyses, including protein association analysis using STRING. RESULTS: Our analysis unveiled a substantial number of Clusters of Orthologous Groups in diverse functional categories in CX-4, among which sphingosine kinase (SphK) emerged as a unique product, exclusively present in the CX-4 strain. SphK is a critical enzyme in the sphingolipid metabolic pathway, generating sphingosine-1-phosphate. The study also brought potential associations with isoprene formation and retinoic acid synthesis, the latter being a metabolite of vitamin A, renowned for its crucial function in promoting skin cell growth, differentiation, and maintaining of skin barrier integrity. These findings collectively suggest the potential of the CX-4 strain in enhancing of skin barrier functionality. CONCLUSION: Our research underscores the potential of the skin-derived S. infantis CX-4 strain by revealing unique bacterial compounds and their potential roles on human skin.


Asunto(s)
Genoma Bacteriano , Streptococcus , Humanos , Filogenia , Streptococcus/genética , Secuenciación Completa del Genoma
4.
Adv Biol (Weinh) ; 8(4): e2300325, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342585

RESUMEN

Skin is an organ having a crucial role in the protection of muscle, bone, and internal organs and undergoing continuous self-renewal and aged. The growing interest in the prevention of skin aging and rejuvenation has sparked a surge of industrial and research studies focusing on the biological and transcriptional changes that occur during skin development and aging. In this study, the aim is to identify transcriptional differences between two main types of human skin cells: the human dermal fibroblasts (HDFs) and the human epidermis keratinocytes (HEKs) isolated from 30 neonatal and 30 adults (old) skin. Through differentially expressed gene (DEG) profiling using DEseq2, 604 up-, and 769 down-regulated genes are identified in the old group. A functional analysis using Metascape Gene Ontology and Reactome pathways revealed systematic transcriptomic shifts in key skin formation and maintenance markers, alongside a distinct difference in HOX gene families crucial for embryonic development and diverse biological processes. Among the 39 human HOX gene family, ten posterior HOX genes (HOXA10, 11, 13, HOXB13, HOXC11, and HOXD9-13) are significantly downregulated, and anterior 25 genes (HOXA2-7, HOXB1-9, HOXC4-6 and 8-9, and HOXD1,3,4 and 8) are upregulated, especially in the old HDFs. The study successfully demonstrates the correlation between HOX genes and the skin aging process, providing strong evidence that HOX genes are proposed as a new marker for skin aging assessment.


Asunto(s)
Genes Homeobox , Piel , Adulto , Recién Nacido , Humanos , Anciano , Perfilación de la Expresión Génica , Queratinocitos , Transcriptoma/genética , Factores de Transcripción/genética , Proteínas de Homeodominio/genética
5.
Anim Microbiome ; 6(1): 3, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38268054

RESUMEN

BACKGROUND: The use of probiotics (PRO) in late gestation sow and their impact on progenies' performance during the post-weaning stage has received more attention from the researchers recently. This study aimed to analyze the effect of probiotic mixture (Bacillus subtilis and Bacillus licheniformis) on both sow and offspring's performance. METHODS: First experiment (Exp.1) was conducted from the 100th day of gestation through to post-weaning. A total of twenty sows and their litters were assigned to one of two dietary treatments, Control (CON) based diet and PRO- CON+ 0.05% probiotic mixture. Dietary treatments were arranged in a split-plot pattern with sow and weaner treatment (CON and PRO diet) as the main and sub plot. Exp.2. E. coli challenge study was carried out two weeks after weaning with 40 piglets. Dietary treatments remained same while all pigs were orally administered with a 1.5 ml suspension of 1010 CFU of K88 strain of E. coli per ml. RESULT: PRO group sow showed significantly decreased backfat thickness difference and body weight difference after farrowing and at the end of weaning d21. The nutrient digestibility of PRO group sows was significantly higher at the end of weaning. Moreover, piglets born from PRO group sow showed higher weaning weight and tend to increase average daily gain at the end of d21. The addition of mixed probiotic in sow and weaner diet had suppressed the production of TNF-α and interleukin-6 in E. coli challenged pigs. The phyla Firmicutes and Bacteroidetes in E. coli -challenged pigs were highly abundant while, the relative abundance of clostridium_sensu_stricto_1 at genus level was significantly reduced by the inclusion of probiotic in both the sow and weaner diet. Also, taxonomic distribution analysis showed significantly lower prevalence of Clostridium and Brachyspira and higher prevalence of Lactobacilli in E. coli-challenged pigs that were born from PRO group sow and fed CON and PRO weaner diet. CONCLUSION: This study reveals that the inclusion of 0.05% mixed probiotics (Bacillus spp.) to both sow and their progenies diet would be more beneficial to enhance the post-weaning growth rate, gut health, and immune status of E. coli challenged pigs.

6.
Genes Genomics ; 46(1): 13-25, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37971618

RESUMEN

BACKGROUND: The skin microbiome, a diverse community of microorganisms, plays a crucial role in maintaining skin health. Among these microorganisms, the gram-positive bacterium Micrococcus luteus exhibits potential for promoting skin health. This study focuses on postbiotics derived from M. luteus YM-4, a strain isolated from human skin. OBJECTIVE: Our objective is to explore the beneficial effects of YM-4 culture filtrate on dermatological health, including enhancing barrier function, modulating immune response, and aiding recovery from environmental damage. METHODS: The effects of the YM-4 culture filtrate were tested on human keratinocytes and fibroblasts under various conditions using real-time PCR for gene expression analysis and fibroblast migration assays. A dehydration-simulated model was employed to prepare RNA-Seq samples from HaCaT cells treated with the YM-4 culture filtrate. Differentially expressed genes were identified and functionally classified through k-means clustering, gene ontology terms enrichment analyses, and protein-protein interactions mapping. RESULTS: The YM-4 culture filtrate enhanced the expression of genes involved in skin hydration, hyaluronic acid synthesis, barrier function, and cell proliferation. It also reduced inflammation markers in keratinocytes and fibroblasts under stress conditions. It mitigated UVB-induced collagen degradation while promoted collagen synthesis, suggesting anti-aging properties, and accelerated wound healing processes by promoting cell proliferation and migration. RNA sequencing analysis revealed that the YM-4 culture filtrate could reverse dehydration-induced transcriptional changes towards a state similar to untreated cells. CONCLUSION: M. luteus YM-4 culture filtrate exhibits significant therapeutic potential for dermatological applications.


Asunto(s)
Deshidratación , Epirrubicina/análogos & derivados , Micrococcus luteus , Humanos , Deshidratación/metabolismo , Piel/metabolismo , Colágeno/metabolismo
7.
Genes (Basel) ; 14(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38136972

RESUMEN

Human endogenous retroviruses (HERVs) comprise a significant portion of the human genome, making up roughly 8%, a notable comparison to the 2-3% represented by coding sequences. Numerous studies have underscored the critical role and importance of HERVs, highlighting their diverse and extensive influence on the evolution of the human genome and establishing their complex correlation with various diseases. Among HERVs, the HERV-K (HML-2) subfamily has recently attracted significant attention, integrating into the human genome after the divergence between humans and chimpanzees. Its insertion in the human genome has received considerable attention due to its structural and functional characteristics and the time of insertion. Originating from ancient exogenous retroviruses, these elements succeeded in infecting germ cells, enabling vertical transmission and existing as proviruses within the genome. Remarkably, these sequences have retained the capacity to form complete viral sequences, exhibiting activity in transcription and translation. The HERV-K (HML-2) subfamily is the subject of active debate about its potential positive or negative effects on human genome evolution and various pathologies. This review summarizes the variation, regulation, and diseases in human genome evolution arising from the influence of HERV-K (HML-2).


Asunto(s)
Retrovirus Endógenos , Humanos , Retrovirus Endógenos/genética , Genoma Humano , Provirus , Variación Genética/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-37796427

RESUMEN

We investigated the effects of crude protein (CP) levels and exogenous enzymes on growth performance, meat quality, toxic gas emissions, and colonic microbiota community in 200 finishing pigs. Four groups corresponded to 4 diets: 16.74% CP (high-protein level, HP) and 14.73% CP (medium protein level, MP) diet supplemented with or without 1-g/kg multi-enzymes (ENZs, including 1000-U/kg protease, 2500-U/kg α-amylase, and 10,000-U/kg ß-glucanase), using a 2 × 2 factorial arrangement. After 7 weeks of trial, ENZs supplementation increased (P < 0.05) the average daily gain (ADG) of finishing pigs during weeks 4 to 7 and in the overall period and improved gross energy utilization. Dietary HP improved (P < 0.05) ADG during the overall period. The MP diet-treated pigs had higher intramuscular fat (IMF) content in the longissimus dorsi muscle (P < 0.01). ENZs supplementation to the MP diets lowered muscle IMF content (P < 0.01). Additionally, pigs fed the HP diet released (P < 0.05) more NH3 and H2S in excrement. The HP diet enhanced (P < 0.05) intestinal microbial richness, represented by higher observed_ amplicon sequence variants and Chao1. Administration of ENZs to the HP diet increased (P < 0.05) the Shannon and Pielou's evenness. Dietary MP promoted Firmicutes proliferation. Supplementary HP diet increased the relative abundances of Spirochaetota, Verrucomicrobiota, Desulfobacterota, and Fibrobacterota (P < 0.05). Supplemental ENZ elevated (P < 0.05) Actinobacteriota and Desulfobacterota abundances. ENZ supplementation to the HP diet increased the abundances of Bacteroidota, Desulfobacterota, and Proteobacteria but lowered their abundances in the MP diet. Taken together, the HP diet or ENZs' supplements improved growth performance. Although the interaction between CP levels and ENZs had no effect on growth performance, it modulated colonic flora and muscle IMF content.

9.
Antonie Van Leeuwenhoek ; 116(11): 1139-1150, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37658955

RESUMEN

A non-motile, novel actinobacterial strain, Kera-3T, which is a gram-positive, aerobic, rod-shaped bacterium, was isolated from human keratinocytes on 1/10 diluted R2A agar. Whole-cell hydrolysis of amino acids revealed the presence of meso-DAP, alanine, and glutamic acid. The predominant menaquinone was MK-9 (H8), whereas the primary fatty acids were C16:0 and C18:1 ω9c. The major phospholipids included diphosphatidylglycerol and aminophospholipids, along with an unidentified phosphoglycolipid and an aminophosphoglycolipid. The G+C content of the genomic DNA was 73.2%, based on the complete genome sequence. Phylogenetic analyses of the 16S rRNA gene sequence and phylogenomic analysis of 91 core genes showed that strain Kera-3T formed a new lineage in the family Iamiaceae, with the closest neighbour Rhabdothermincola sediminis SYSU G02662T having 91.19% 16S rRNA gene sequence identity. A comparative genomic study of the predicted general metabolism and carbohydrate-active enzymes supported the phylogenetic and phylogenomic data. Based on the analysis of physiological, biochemical, and genomic characteristics, strain Kera-3T can be distinguished from known genera in the family Iamiaceae and represents a novel genus and species. Therefore, the name Dermatobacter hominis gen. nov., sp. nov. was proposed, with the type strain Kera-3T (= KACC 22415T = LMG 32493T).

10.
Front Microbiol ; 14: 1093312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089549

RESUMEN

Epizootic Shell Disease (ESD) has posed a great threat, both ecologically and economically, to the American lobster population of Long Island Sound since its emergence in the late 1990s. Because of the polymicrobial nature of carapace infections, causative agents for ESD remain unclear. In this study, we aimed to identify carapace microbiota associated with ESD and its potential impact on the microbiota of internal organs (green gland, hepatopancreas, intestine, and testis) using high-throughput 16S rRNA gene sequencing. We found that lobsters with ESD harbored specific carapace microbiota characterized by high abundance of Aquimarina, which was significantly different from healthy lobsters. PICRUSt analysis showed that metabolic pathways such as amino acid metabolism were enriched in the carapace microbiota of lobsters with ESD. Aquimarina, Halocynthiibacter, and Tenacibaculum were identified as core carapace bacteria associated with ESD. Particularly, Aquimarina and Halocynthiibacter were detected in the green gland, hepatopancreas, and testis of lobsters with ESD, but were absent from all internal organs tested in healthy lobsters. Hierarchical clustering analysis revealed that the carapace microbiota of lobsters with ESD was closely related to the green gland microbiota, whereas the carapace microbiota of healthy lobsters was more similar to the testis microbiota. Taken together, our findings suggest that ESD is associated with alterations in the structure and function of carapace microbiota, which may facilitate the invasion of bacteria into the green gland.

11.
Microorganisms ; 11(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37110293

RESUMEN

Functional cosmetics industries using skin microbiome screening and beneficial materials isolated from key microorganisms are receiving increasing attention. Since Epidermidibacterium keratini EPI-7T was first discovered in human skin, previous studies have confirmed that it can produce a new pyrimidine compound, 1,1'-biuracil, having anti-aging effects on human skin. Therefore, we conducted genomic analyses to judge the use value of E. keratini EPI-7T and provide up-to-date information. Whole-genome sequencing analysis of E. keratini EPI-7T was performed to generate new complete genome and annotation information. E. keratini EPI-7T genome was subjected to comparative genomic analysis with a group of closely-related strains and skin flora strains through bioinformatic analysis. Furthermore, based on annotation information, we explored metabolic pathways for valuable substances that can be used in functional cosmetics. In this study, the whole-genome sequencing (WGS) and annotation results of E. keratini EPI-7T were improved, and through comparative analysis, it was confirmed that the E. keratini EPI-7T has more metabolite-related genes than comparison strains. In addition, we annotated the vital genes for biosynthesis of 20 amino acids, orotic acid, riboflavin (B2) and chorismate. In particular, we were able to prospect that orotic acid could accumulate inside E. keratini EPI-7T under uracil-enriched conditions. Therefore, through a genomics approach, this study aims to provide genetic information for the hidden potential of E. keratini EPI-7T and the strain development and biotechnology utilization to be conducted in further studies.

12.
J Oral Microbiol ; 15(1): 2186591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891192

RESUMEN

Oral microbial ecosystem could influence intestinal diseases, but there have been insufficient studies demonstrating the association of microbial composition between the oral cavity and the intestinal system. Thus, we aimed to investigate the compositional network within the oral microbiome related to gut enterotype from saliva and stool samples collected from 112 healthy Korean subjects. Here, we performed bacterial 16S amplicon sequencing from clinical samples. Then, we determined oral microbiome type related to individual's gut enterotype for healthy Korean. The co-occurrence analysis was performed to interactivity prediction of microbiome within saliva samples. As a result, it could be classified into two Korean oral microbiome types (KO) and four oral-gut-associated microbiome types (KOGA) according to distribution and significant differences of oral microflora. The co-occurrence analysis showed various bacterial compositional networks linked around Streptococcus and Haemophilus within healthy subjects. The present study was first approach in healthy Koreans to identify the oral microbiome types related to the gut microbiome and investigate their characteristics. Hence, we suggest that our results could be potential healthy control data for identifying differences in microbial composition between healthy people and oral disease patients and studying microbial association with the gut microbial environment (oral-gut microbiome axis).

13.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902064

RESUMEN

The present study investigated the effect of topical application of Epidermidibacterium Keratini (EPI-7) ferment filtrate, which is a postbiotic product of a novel actinobacteria, on skin aging, by performing a prospective randomized split-face clinical study on Asian woman participants. The investigators measured skin biophysical parameters, including skin barrier function, elasticity, and dermal density, and revealed that the application of the EPI-7 ferment filtrate-including test product resulted in significantly higher improvements in barrier function, skin elasticity, and dermal density compared to the placebo group. This study also investigated the influence of EPI-7 ferment filtrate on skin microbiome diversity to access its potential beneficial effects and safety. EPI-7 ferment filtrate increased the abundance of commensal microbes belonging to Cutibacterium, Staphylococcus, Corynebacterium, Streptococcus, Lawsonella, Clostridium, Rothia, Lactobacillus, and Prevotella. The abundance of Cutibacterium was significantly increased along with significant changes in Clostridium and Prevotella abundance. Therefore, EPI-7 postbiotics, which contain the metabolite called orotic acid, ameliorate the skin microbiota linked with the aging phenotype of the skin. This study provides preliminary evidence that postbiotic therapy may affect the signs of skin aging and microbial diversity. To confirm the positive effect of EPI-7 postbiotics and microbial interaction, additional clinical investigations and functional analyses are required.


Asunto(s)
Actinomycetales , Propionibacteriaceae , Envejecimiento de la Piel , Humanos , Estudios Prospectivos , Piel/microbiología
14.
Front Vet Sci ; 10: 1107149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777676

RESUMEN

Introduction: The objective of this study was to investigate the effects of dietary supplementation of tributyrin and anise mixture (TA) on growth performance, apparent nutrient digestibility, fecal noxious gas emission, fecal score, jejunal villus height, hematology parameters, and fecal microbiota of weaned pigs. Methods: A total of 150 21-day-old crossbred weaned pigs [(Landrace × Yorkshire) × Duroc] were used in a randomized complete block design experiment. All pigs were randomly assigned to 3 groups based on the initial body weight (6.19 ± 0.29 kg). Each group had 10 replicate pens with 5 pigs (three barrows and two gilts) per pen. The experimental period was 42 days and consisted of 3 phases (phase 1, days 1-7; phase 2, days 8-21; phase 3, days 22-42). Dietary treatments were based on a corn-soybean meal-basal diet and supplemented with 0.000, 0.075, or 0.150% TA. Results and discussion: We found that dietary supplementation of graded levels of TA linearly improved body weight, body weight gain, average daily feed intake, and feed efficiency (P < 0.05). TA supplementation also had positive effects on apparent dry matter, crude protein, and energy digestibility (P < 0.05) and jejunal villus height (P < 0.05). The emission of ammonia from feces decreased linearly with the dose of TA increased (P < 0.05). Moreover, TA supplementation was capable to regulate the fecal microbiota diversity, manifesting in a linearly increased Chao1 index and observed species and a linearly decreased Pielou's index (P < 0.05). The abundance of Lactobacillus reuteri, Lactobacillus amylovorus, Clostridium butyricum were increased, while the abundance of Prevotella copri was decreased, by treatment (P < 0.05). Therefore, we speculated that TA supplementation would improve growth performance and reduce fecal ammonia emission through improving nutrient digestibility, which was attributed to the increase of jejunal villus height and the regulation of fecal microbiota.

15.
Cell Biosci ; 13(1): 8, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635704

RESUMEN

BACKGROUND: Temporal lobe epilepsy (TLE) remains one of the most drug-resistant focal epilepsies. Glutamate excitotoxicity and neuroinflammation which leads to loss of synaptic proteins and neuronal death appear to represent a pathogen that characterizes the neurobiology of TLE. Photobiomodulation (PBM) is a rapidly growing therapy for the attenuation of neuronal degeneration harboring non-invasiveness benefits. However, the detailed effects of PBM on excitotoxicity or neuroinflammation remain unclear. We investigated whether tPBM exerts neuroprotective effects on hippocampal neurons in epilepsy mouse model by regulating synapse and synapse-related genes. METHODS: In an in vitro study, we performed imaging analysis and western blot in primary hippocampal neurons from embryonic (E17) rat pups. In an in vivo study, RNA sequencing was performed to identify the gene regulatory by PBM. Histological stain and immunohistochemistry analyses were used to assess synaptic connections, neuroinflammation and neuronal survival. Behavioral tests were used to evaluate the effects of PBM on cognitive functions. RESULTS: PBM was upregulated synaptic connections in an in vitro. In addition, it was confirmed that transcranial PBM reduced synaptic degeneration, neuronal apoptosis, and neuroinflammation in an in vivo. These effects of PBM were supported by RNA sequencing results showing the relation of PBM with gene regulatory networks of neuronal functions. Specifically, Nlgn3 showed increase after PBM and silencing the Nlgn3 reversed the positive effect of PBM in in vitro. Lastly, behavioral alterations including hypoactivity, anxiety and impaired memory were recovered along with the reduction of seizure score in PBM-treated mice. CONCLUSIONS: Our findings demonstrate that PBM attenuates epileptic excitotoxicity, neurodegeneration and cognitive decline induced by TLE through inhibition of the Nlgn3 gene decrease induced by excitotoxicity.

16.
J Anim Sci Technol ; 65(6): 1308-1322, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38616871

RESUMEN

Minerals is required small amounts among various nutrients, but it has a significant impact on sow longevity and reproduction performance. This study was carried out to see the beneficial effects of marine-derived Ca-Mg complex on the reproductive performance of sows during four-parity periods. Seventy-two gilts ([Yorkshire × Landrace] × Duroc), with an average body weight of 181 kg, were randomly allocated to three groups; CON (basal diet), 0.3LC (CON - MgO - 0.3% limestone + 0.4% Ca-Mg complex), and 0.7LC (CON - MgO - 0.7% limestone + 0.4% Ca-Mg complex). During parity 3 and 4, the expression level of SCD gene was lower in the umbilical cord of piglets born to 0.3LC and 0.7LC sows compared with the CON sows. During parity 2, 3 and 4, SLC2A2 and FABP4 gene expressions were higher in the umbilical cord of piglets born to 0.7LC sows and the placenta of sows from 0.3LC groups, respectively. Ca-Mg complex increased (p < 0.05) Ca and Mg concentrations in sows and their piglets' serum as well as in colostrum regardless of parities. The serum vitamin D concentration was higher (p < 0.05) in their first parity, whereas serum prolactin and estrogen concentrations were higher (p < 0.05) during the fourth and third parity, respectively. The growth hormone concentrations were higher (p < 0.05) in the piglets born to sows during the first and second parity. The fat and immunoglobulin A (IgA) concentrations in colostrum were higher (p < 0.05) during the third and fourth parity, respectively. A reduction (p < 0.05) in salivary cortisol, epinephrine, and norepinephrine concentrations was observed in 0.3LC and 0.7LC sow groups compared with CON after farrowing regardless of parity, however before farrowing, a reduction in norepinephrine was observed. Before farrowing, the epinephrine and norepinephrine concentrations were higher (p < 0.05) during the first and second parity. After farrowing, the concentration of these hormones was higher during the second parity. Taken together, sows' parity and dietary Ca-Mg complex supplementation influenced serum metabolites, colostrum nutrients, stress hormones as well as the gene expressions related to lipid and glucose metabolism.

17.
Front Microbiol ; 13: 1044256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532479

RESUMEN

The importance of probiotics in pig production is widely recognized. However, the precise role of probiotics in regulating the gut microbiota of piglets has not been assessed extensively. Therefore, we intend to examine whether suckling pigs ingesting with synthetic milk (SM) and probiotics along with mother milk has a carryover effect on its growth and gut health at the post-weaning stage. A total of 40 [Duroc× (Yorkshire× Landrace)] neonates with an initial BW of 1.49 ± 0.28 kg were assigned to one of two treatments groups: control (CON) and treatment (TRT). Control group piglets were nourished with synthetic milk, while TRT group piglets were nourished SM with (1 × 109 CFU/g) Lactobacillus sp. probiotics. The treatment group piglets showed higher (p < 0.05) body weight and daily gain at week 3 than the CON group piglets. 16S metagenome sequencing showed average demultiplexed reads and denoised reads counts of 157,399 and 74,945, respectively. The total ASV taxonomy number classified with a confidence threshold > 70% (default) on sequence alignment with the SILVA v138 reference database was 4,474. During week 1, Escherichia-Shigella, Clostridium sensu stricto 1, and Bacteroides were confirmed as the major dominant bacterial genera in both the groups at the genus level. However, during week 2, the relative proportion of Escherichia-Shigella, Clostridium sensu stricto 1, and Proteobacteria was decreased, while that of Lactobacillus and Bacteroidota was increased in pigs receiving the probiotic supplement. During weeks 2 and 3, Firmicutes, Proteobacteria, and Bacteroidota phyla were dominant in both groups. During week 6, the relative proportion of Proteobacteria was slightly increased in both groups. Furthermore, Prevotella was confirmed as the major dominant bacterial genus in both groups during weeks 3 and 6. This study suggests that nourishing neonatal piglets with synthetic milk and Lactobacillus sp. probiotics from birth to 21 days would be beneficial to enhance the gut health of piglets and to overcome post-weaning mortality.

18.
Life (Basel) ; 12(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36295018

RESUMEN

Transposable elements (TEs) are classified into two classes according to their mobilization mechanism. Compared to DNA transposons that move by the "cut and paste" mechanism, retrotransposons mobilize via the "copy and paste" method. They have been an essential research topic because some of the active elements, such as Long interspersed element 1 (LINE-1), Alu, and SVA elements, have contributed to the genetic diversity of primates beyond humans. In addition, they can cause genetic disorders by altering gene expression and generating structural variations (SVs). The development and rapid technological advances in next-generation sequencing (NGS) have led to new perspectives on detecting retrotransposon-mediated SVs, especially insertions. Moreover, various computational methods have been developed based on NGS data to precisely detect the insertions and deletions in the human genome. Therefore, this review discusses details about the recently studied and utilized NGS technologies and the effective computational approaches for discovering retrotransposons through it. The final part covers a diverse range of computational methods for detecting retrotransposon insertions with human NGS data. This review will give researchers insights into understanding the TEs and how to investigate them and find connections with research interests.

19.
J Periodontal Implant Sci ; 52(5): 394-410, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36302646

RESUMEN

PURPOSE: The purpose of this study was to compare the microbial composition of 3 types of oral samples through 16S metagenomic sequencing to determine how to resolve some sampling issues that occur during the collection of sub-gingival plaque samples. METHODS: In total, 20 subjects were recruited. In both the healthy and periodontitis groups, samples of saliva and supra-gingival plaque were collected. Additionally, in the periodontitis group, sub-gingival plaque samples were collected from the deepest periodontal pocket. After DNA extraction from each sample, polymerase chain reaction amplification was performed on the V3-V4 hypervariable region on the 16S rRNA gene, followed by metagenomic sequencing and a bioinformatics analysis. RESULTS: When comparing the healthy and periodontitis groups in terms of alpha-diversity, the saliva samples demonstrated much more substantial differences in bacterial diversity than the supra-gingival plaque samples. Moreover, in a comparison between the samples in the case group, the diversity score of the saliva samples was higher than that of the supra-gingival plaque samples, and it was similar to that of the sub-gingival plaque samples. In the beta-diversity analysis, the sub-gingival plaque samples exhibited a clustering pattern similar to that of the periodontitis group. Bacterial relative abundance analysis at the species level indicated lower relative frequencies of bacteria in the healthy group than in the periodontitis group. A statistically significant difference in frequency was observed in the saliva samples for specific pathogenic species (Porphyromonas gingivalis, Treponema denticola, and Prevotella intermedia). The saliva samples exhibited a similar relative richness of bacterial communities to that of sub-gingival plaque samples. CONCLUSIONS: In this 16S oral microbiome study, we confirmed that saliva samples had a microbial composition that was more similar to that of sub-gingival plaque samples than to that of supra-gingival plaque samples within the periodontitis group.

20.
Genes Genomics ; 44(10): 1215-1229, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36040684

RESUMEN

BACKGROUND: The innate immune regulation, especially by the type I IFN signature in the CD14+ monocytes, is known to be critical in the pathogenesis of autoimmune Sjögren's syndrome (SjS) and systemic lupus erythematosus (SLE). OBJECTIVE: Since patients with one condition can be overlapped with another, this study is to identify shared differentially expressed genes (DEGs) in SjS and SLE compared to healthy controls (HCs) and refine transcriptomic profiles with the integrated Reactome and gene-drug network analysis for an anti-inflammation therapy. METHODS: CD14+ monocytes were purified from whole blood of SjS and SLE patients (females, ages from 32 to 62) and subject to bulk RNA-sequencing, followed by data analyses for comparison with HC monocytes (females, ages 30 and 33). Functional categorizations, using Gene Ontology (GO) and the Reactome pathway analysis, were performed and DEGs associated with therapeutic drugs were identified from the Drug Repurposing Hub (DHUB) database. RESULTS: The GO analysis revealed that DEGs in the inflammatory response and the cellular response to cytokine were highly enriched in both conditions. A propensity toward M1 macrophage differentiation appears to be prominent in SjS while the Response to Virus was significant in SLE monocytes. Through the Reactome pathway analysis, DEGs in the IFN signaling and the cytokine signaling in immune system were most significantly enriched in both. Upregulation of NGF-induced transcription activity in SjS and the complement cascade activity in SLE were also noted. Multiple anti-inflammatory drugs, such as prostaglandin-endoperoxide synthase and angiotensin-I-converting- enzyme were associated with the DEGs in these conditions. CONCLUSIONS: Taken together, our analysis indicates distinct inflammatory transcriptomic profiles shared in SjS and SLE monocytes. Comprehensive characterizations of the data from these conditions will ultimately allow differential diagnosis of each condition and identification of therapeutic targets.


Asunto(s)
Lupus Eritematoso Sistémico , Síndrome de Sjögren , Adulto , Angiotensinas , Citocinas , Femenino , Humanos , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/genética , Persona de Mediana Edad , Monocitos/metabolismo , Factor de Crecimiento Nervioso , Prostaglandina-Endoperóxido Sintasas , ARN , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...