Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38265430

RESUMEN

Identified as a newly described species from a biocrust in Svalbard, Norway (78° 54' 8.27″ N 12° 01' 20.34″ E), isolate PAP01T has different characteristics from any known predatory bacteria. The isolate was vibrio-shaped strain that employed flagellar motility. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate clustered within the genus Bdellovibrio in the family Bdellovibrionaceae. 16S rRNA gene sequence similarities between strain PAP01T and the type strain (Bdellovibrio bacteriovorus HD100) was 95.7 %. The PAP01T genome has a size of 3.898 Mbp and possesses 3732 genes and a G+C content of 45.7 mol%. The results of genetic and physiological tests indicated the phenotypic differentiation of strain PAP01T from the two other Bdellovibrio species with validly published names. Based on the physiological and phylogenetic data, as well as the prey range spectrum and osmolality sensitivities, isolate PAP01T represents a novel species within the genus Bdellovibrio, for which the name Bdellovibrio svalbardensis sp. nov. is proposed. The type strain is PAP01T (=KCTC 92583T=DSM 115080T).


Asunto(s)
Bdellovibrio , Svalbard , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Noruega
2.
Food Sci Biotechnol ; 32(12): 1729-1743, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37780591

RESUMEN

Biofilms are a major concern within the food industry since they have the potential to reduce productivity in situ (within the field), impact food stability and storage, and cause downstream food poisoning. Within this review, predatory bacteria as potential biofilm control and eradication agents are discussed, with a particular emphasis on the intraperiplasmic Bdellovibrio-and-like organism (BALO) grouping. After providing a brief overview of predatory bacteria and their activities, focus is given to how BALOs fulfill four attributes that are essential for biocontrol agents to be successful in the food industry: (1) Broad spectrum activity against pathogens, both plant and human; (2) Activity against biofilms; (3) Safety towards humans and animals; and (4) Compatibility with food. As predatory bacteria possess all of these characteristics, they represent a novel form of biofilm biocontrol that is ripe for use within the food industry.

3.
Microbiol Spectr ; 11(3): e0017323, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036359

RESUMEN

While diverse antibacterials are available in nature, each possesses their own strengths and limitations. One such antibacterial is colicins, proteinaceous toxins that are produced by strains of E. coli to subvert the growth or viability of other E. coli strains. Similarly, predatory bacteria, of which Bdellovibrio bacteriovorus is well-known, are microbes that actively predate on and consume other Gram-negative bacterial strains. While they are all quite active as antibacterials, they also present some limitations: rapid resistance development to colicins while predation does not completely kill their prey. Within this study, therefore, we evaluated the impact of two different colicins (colicin B [ColB] and colicin E5 [ColE5]) and B. bacteriovorus HD100 either individually or together against four clinical isolates of E. coli that are resistant to either colistin or carbapenem. While the ColB and ColE5 were quickly active when used alone, causing a significant loss in viability (>3-log) in susceptible populations after only 3 h, the pathogens always grew afterwards and had final cell densities that were similar with their respective controls. Predation with B. bacteriovorus HD100, in contrast, was most pronounced after 24 h (>3-log reduction in each pathogen viability but never complete). When combined, better killing efficiencies were observed with several of the pathogens, with complete eradication realized for two (<100 viable pathogens per mL). Given the diversity of colicins in nature and the broad-spectrum activities of B. bacteriovorus strains, the results presented here suggest there is a massive potential to control pathogens when they are used together. IMPORTANCE The coupled impact of drug resistance with reduced antibiotic development has placed humankind at a postantibiotic crossroads where antibiotic alternatives are desperately needed. Consequently, we discuss here the combined effectiveness of two vastly different classes of antibacterials, namely, colicins and a predatory bacterium (i.e.,Bdellovibrio bacteriovorus HD100), against two priority pathogenic groups, colistin- and carbapenem-resistant strains of E. coli. While each is effective in its own manner, these antibacterials also display limitations, i.e., the rapid appearance of mutations that confer resistance to the colicins while predatory bacteria do not completely kill their prey. Here, we show these limitations can be overcome using combined treatments of these antibacterials, with two pathogenic E. coli populations completely eradicated within 24 h. Given the diversity of colicins and the broad-spectrum activities of B. bacteriovorus strains, the results presented here suggests there is a massive potential to control pathogens when they are used together.


Asunto(s)
Bdellovibrio bacteriovorus , Colicinas , Escherichia coli , Colistina/farmacología , Carbapenémicos , Bacterias , Antibacterianos/farmacología
4.
Microbiol Spectr ; 10(6): e0309422, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36445149

RESUMEN

Bdellovibrio and like organisms (BALOs) are a unique bacterial group that live by predating on other bacteria, consuming them from within to grow and replicate before the progeny come out to complete the life cycle. The mechanisms by which these predators recognize their prey and differentiate them from nonprey bacteria, however, are still not clear. Through genetic knockout and complementation studies in different Escherichia coli strains, we found that Bdellovibrio bacteriovorus strain 109J recognizes outer membrane porin F (OmpF) on the E. coli surface and that the activity of the E. coli EnvZ-OmpR regulatory system significantly impacts predation kinetics. OmpF is not the only signal by which BALOs recognize their prey, however, as B. bacteriovorus could eventually predate on the E. coli ΔompF mutant after prolonged incubation. Furthermore, recognizing OmpF as a prey surface structure was dependent on the prey strain, as knocking out OmpF protein homologues in other prey species, including Escherichia fergusonii, Klebsiella pneumoniae, and Salmonella enterica, did not always reduce the predation rate. Consequently, although OmpF was found to be an important surface component used by Bdellovibrio to efficiently recognize and attack E. coli, future work is needed to determine what other prey surface structures are recognized by these predators. IMPORTANCE Bdellovibrio bacteriovorus and like organisms (BALOs) are Gram-negative predatory bacteria that attack other Gram-negative bacteria by penetrating their periplasm and consuming them from within to obtain the nutrients necessary for the predator's growth and replication. How these predators recognize their prey, however, has remained a mystery. Here, we show that the outer membrane porin F (OmpF) in E. coli is recognized by B. bacteriovorus strain 109J and that the loss of this protein leads to severely delayed predation. However, predation of several other prey species was not dependent on the recognition of this protein or its homologues, indicating that there are other structures recognized by the predators on the prey surface that are yet to be discovered.


Asunto(s)
Bdellovibrio bacteriovorus , Escherichia coli , Porinas , Bdellovibrio bacteriovorus/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Porinas/genética , Porinas/metabolismo
5.
Microbiol Spectr ; 10(3): e0082522, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35695499

RESUMEN

A method to rapidly quantify predatory bacterial cell populations using resazurin reduction to resorufin and its resulting fluorescence kinetics (dF/dt) are described. The reliability of this method to measure the predatory populations was demonstrated with the type strain, Bdellovibrio bacteriovorus HD100, as well as B. bacteriovorus 109J and two natural isolates, Halobacteriovorax strains JA-1 and JA-3, with clear correlation when densities were between 107 and 109 PFU/ml. Resazurin was also used to evaluate how B. bacteriovorus HD100 and Halobacteriovorax strain JA-1 respond to harmful conditions, i.e., exposure to sodium dodecyl sulfate (SDS), with both the dF/dt and PFU/ml indicating Halobacteriovorax strain JA-1 is more sensitive to this surfactant. Tests were also performed using media of different osmolalities, with the dF/dt values matching the 24-h predatory activities reasonably well. Finally, this method was successfully applied in near real-time analyses of predator-prey dynamics and, when coupled with SDS, was capable of differentiating between the predatory and prey populations. All of these tests serve to prove this method is (i) very rapid, needing only 15 min from start to finish; (ii) very reliable with different predatory bacterial species; and (iii) very versatile as it can be easily adapted to measure predatory numbers and activities in a range of experiments. IMPORTANCEBdellovibrio and like organisms are predatory bacteria that are capable of attacking, killing, and consuming many bacterial pathogens, including multidrug-resistant strains. These qualities have led to them being labeled as "living antibiotics." Research work with these remarkable strains, however, has been hampered by long growth times needed to quantify the predatory populations through plaque assays, which typically take 4 days to develop. Here, we describe a fluorescence-based method using the conversion of resazurin (low fluorescence) to resorufin (high fluorescence) after it is reduced by the predators' NADH. Not only do we show that the fluorescence correlates strongly with the predatory concentration and that we can use it to evaluate if the predators are viable, but the entire procedure from start to finish takes only 15 min, drastically reducing the time researchers need to quantify the predatory numbers. Employing this technique will greatly advance research related to predatory bacteria and their potential applications.


Asunto(s)
Bdellovibrio bacteriovorus , Bdellovibrio , Oxazinas , Proteobacteria , Reproducibilidad de los Resultados , Xantenos
6.
Microbiol Spectr ; 10(3): e0060722, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35435740

RESUMEN

Prodigiosin possesses antibacterial activities, but as a highly hydrophobic compound, it raised the question about how Serratia marcescens introduce this compound to other microbes. Here, we demonstrate that the production of prodigiosin by newly isolated S. marcescens RH10 correlates with its antibacterial activity against a multidrug-resistant strain of S. aureus, with this pathogen's viability decreasing 6-log over 24 h. While S. marcescens RH10 does secrete membrane vesicles that carry prodigiosin, this antibiotic was not active in this form, with 5 mg/L prodigiosin leading to only a 1.22-fold reduction in the S. aureus viability while the same quantity of purified prodigiosin led to a 2800-fold reduction. Contact assays, however, showed increased activity, with a 3-log loss in the S. aureus viabilities in only 6 h as long as de novo production of prodigiosin occurred. The role of prodigiosin was confirmed further by generating an isogenic ΔpigA mutant in S. marcescens RH10, based on the draft genome sequence reported here, to inhibit the synthesis of prodigiosin. In all experiments performed, this mutant was unable to kill S. aureus. Finally, the possibility that the type VI secretion system present in S. marcescens may also be important was also explored as it is known to be used by this strain to kill other microbes. The results here, however, found no obvious activity against S. aureus. In conclusion, the results presented here show prodigiosin requires both cell-to-cell contact and de novo synthesis for it to be effective as an antibiotic for its native host. IMPORTANCE The antibacterial activities of prodigiosin are well-established but, as a hydrophobic molecule, the mechanisms used to introduce it to susceptible microbes has never been studied. We found here, in contrast to violacein, another hydrophobic antibiotic that can be transferred using membrane vesicles (MVs), prodigiosin is also carried from Serratia marcescens in MVs released but its resulting activities were severely mitigated compared to the freely added compound, suggesting it is more tightly bound to the MVs than violacein. This led us to hypothesize that cell-to-cell contact is needed, which we demonstrate here. As well, we show de novo synthesis of prodigiosin is needed for it to be effective. As violacein- and prodigiosin-producing bacterial strains are both beneficial to amphibians, where they help protect the skin against pathogens, the findings presented here provide an important ecological perspective as they show the mechanisms used differ according to the antibacterial produced.


Asunto(s)
Prodigiosina , Serratia marcescens , Antibacterianos/farmacología , Prodigiosina/metabolismo , Prodigiosina/farmacología , Serratia marcescens/química , Serratia marcescens/genética , Serratia marcescens/metabolismo , Staphylococcus aureus/metabolismo
7.
Microbiol Res ; 255: 126941, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34915266

RESUMEN

As mankind evaluates moving toward permanently inhabiting outer space and other planetary bodies, alternatives to antibiotic that can effectively control drug-resistant pathogens are needed. The activity of one such alternative, Bdellovibrio bacteriovorus HD100, was explored here, and was found to be as active or better in simulated microgravity (SMG) conditions as in flask and normal gravity (NG) cultures, with the prey viabilities decreasing by 3- to 7-log CFU/mL in 24 h. The activity of B. bacteriovorus HD100 under SMG was also appraised with three different carbapenem- and colistin-resistant pathogenic bacterial strains. In addition to being more efficient at killing two of these pathogens under SMG conditions (with losses of 5- to 6-log CFU/mL), we also explored the ability of B. bacteriovorus HD100 to hydrolyze the carbapenem- and colistin-resistant gene pools, i.e., mcr-1, blaKPC-2 and blaOXA-51, present in these clinical isolates. We found removal efficiencies of 97.4 ± 0.9 %, 97.8 ± 0.4 % and 99.3 ± 0.1 %, respectively, in SMG cultures, while similar reductions were also seen in the flask and NG cultures. These results illustrate the potential applicability of B. bacteriovorus HD100 as an antibiotic to combat the ever-growing threat of multidrug-resistant (MDR) pathogens during spaceflight, such as in the International Space Station (ISS).

8.
ACS Nano ; 15(5): 9143-9153, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33988968

RESUMEN

Despite their high potency, the widespread implementation of natural antimicrobial peptides is still challenging due to their low scalability and high hemolytic activities. Herein, we address these issues by employing a modular approach to mimic the key amino acid residues present in antimicrobial peptides, such as lysine, leucine, and serine, but on the highly biocompatible poly(ethylene glycol) (PEG) backbone. A series of these PEG-based peptides (PEGtides) were developed using functional epoxide monomers, corresponding to each key amino acid, with several possessing highly potent bactericidal activities and controlled selectivities, with respect to their hemolytic behavior. The critical role of the composition and the structure of the PEGtides in their selectivities was further supported by coarse-grained molecular dynamic simulations. This modular approach is anticipated to provide the design principles necessary for the future development of antimicrobial polymers.


Asunto(s)
Antiinfecciosos , Peptidomiméticos , Antiinfecciosos/farmacología , Bacterias , Peptidomiméticos/farmacología , Polietilenglicoles , Polímeros
9.
Microb Ecol ; 81(2): 347-356, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32892232

RESUMEN

Bdellovibrio bacteriovorus 109J is a predatory bacterium which lives by predating on other Gram-negative bacteria to obtain the nutrients it needs for replication and survival. Here, we evaluated the effects two classes of bacterial signaling molecules (acyl homoserine lactones (AHLs) and diffusible signaling factor (DSF)) have on B. bacteriovorus 109J behavior and viability. While AHLs had a non-significant impact on predation rates, DSF considerably delayed predation and bdelloplast lysis. Subsequent experiments showed that 50 µM DSF also reduced the motility of attack-phase B. bacteriovorus 109J cells by 50% (38.2 ± 14.9 vs. 17 ± 8.9 µm/s). Transcriptomic analyses found that DSF caused genome-wide changes in B. bacteriovorus 109J gene expression patterns during both the attack and intraperiplasmic phases, including the significant downregulation of the flagellum assembly genes and numerous serine protease genes. While the former accounts for the reduced speeds observed, the latter was confirmed experimentally with 50 µM DSF completely blocking protease secretion from attack-phase cells. Additional experiments found that 30% of the total cellular ATP was released into the supernatant when B. bacteriovorus 109J was exposed to 200 µM DSF, implying that this QS molecule negatively impacts membrane integrity.


Asunto(s)
Bdellovibrio bacteriovorus/efectos de los fármacos , Ácidos Grasos Monoinsaturados/toxicidad , Percepción de Quorum , 4-Butirolactona/análogos & derivados , 4-Butirolactona/toxicidad , Antibiosis/efectos de los fármacos , Bdellovibrio bacteriovorus/genética , Bdellovibrio bacteriovorus/metabolismo , Bdellovibrio bacteriovorus/fisiología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Flagelos/genética , Serina Proteasas/genética , Serina Proteasas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Transcriptoma/efectos de los fármacos
10.
Appl Microbiol Biotechnol ; 104(9): 3705-3713, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32172325

RESUMEN

Bdellovibrio-and-like organisms (BALOs) are a small group of bacteria that actively predate on other Gram-negative bacterial species. Although viewed mostly in a positive light, such as their potential use as living antibiotics to reduce pathogenic strain populations, several studies have also highlighted the need to control their activities, such as in the production of biodiesel. Consequently, this mini-review discusses research being conducted to characterize compounds and environmental settings that influence predation rates and the mechanisms by which they accomplish this, with a heavy emphasis on studies published within the last decade.Key points• This review discusses bacterial predators and factors impacting their activities. • Emphasis is on recent articles, particularly those discussing prey metabolites. • The implications on possible applications of bacterial predators are discussed.


Asunto(s)
Antibiosis , Bacterias/efectos de los fármacos , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Bdellovibrio/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Bacterias/metabolismo , Bdellovibrio/efectos de los fármacos , Metabolismo
11.
Environ Microbiol ; 22(2): 705-713, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31814287

RESUMEN

This study describes Chromobacterium violaceum's use of extracellular membrane vesicles (MVs) to both solubilize and transport violacein to other microorganisms. Violacein is a hydrophobic bisindole with known antibiotic activities against other microorganisms. Characterization of the MVs found they carried more violacein than protein (1.37 ± 0.19-fold), suggesting they may act as a reservoir for this compound. However, MVs are not produced in response to violacein - a ΔvioA isogenic mutant, which is incapable of making violacein, actually produced significantly more MVs (3.2-fold) than the wild-type strain. Although violacein is insoluble in water (Log Poctanol:water = 3.34), 79.5% remained in the aqueous phase when it was present within the C. violaceum MVs, an increase in solubility of 1740-fold. Moreover, tests with a strain of Staphylococcus aureus showed MV-associated violacein is bactericidal, with 3.1 mg/l killing 90% of S. aureus in 6 h. Tests with the ΔvioA MVs found no loss in the S. aureus viability, even when its MVs were added at much higher concentrations, demonstrating violacein is the active component within the wild-type MVs. In conclusion, our study clearly demonstrates C. violaceum produces MVs and uses them as vehicles to solubilize violacein and transport this hydrophobic antibiotic to other microbes.


Asunto(s)
Antibacterianos/metabolismo , Chromobacterium/metabolismo , Indoles/metabolismo , Staphylococcus aureus/efectos de los fármacos , Antibiosis/fisiología , Transporte Biológico/fisiología , Vesículas Extracelulares/metabolismo
12.
mBio ; 8(6)2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259082

RESUMEN

Predation of Chromobacterium piscinae by Bdellovibrio bacteriovorus HD100 was inhibited in dilute nutrient broth (DNB) but not in HEPES. Experiments showed that the effector responsible was present in the medium, as cell-free supernatants retained the ability to inhibit predation, and that the effector was not toxic to B. bacteriovorus Violacein, a bisindole secondary metabolite produced by C. piscinae, was not responsible. Further characterization of C. piscinae found that this species produces sufficient concentrations of cyanide (202 µM) when grown in DNB to inhibit the predatory activity of B. bacteriovorus, but that in HEPES, the cyanide concentrations were negligible (19 µM). The antagonistic role of cyanide was further confirmed, as the addition of hydroxocobalamin, which chelates cyanide, allowed predation to proceed. The activity of cyanide against B. bacteriovorus was found to be twofold, depending on the life cycle stage of this predator. For the attack-phase predatory cells, cyanide caused the cells to lose motility and tumble, while for intraperiplasmic predators, development and lysis of the prey cell were halted. These findings suggest that cyanogenesis in nature may be employed by the bacterial strains that produce this compound to prevent and reduce their predation by B. bacteriovorusIMPORTANCE Bacterial predators actively attack, kill, and enter the periplasm of susceptible Gram-negative bacteria, where they consume the prey cell components. To date, the activity of B. bacteriovorus HD100 has been demonstrated against more than 100 human pathogens. As such, this strain and others are being considered as potential alternatives or supplements to conventional antibiotics. However, the production of secondary metabolites by prey bacteria is known to mitigate, and even abolish, predation by bacterivorous nematodes and protists. With the exception of indole, which was shown to inhibit predation, the effects of bacterial secondary metabolites on B. bacteriovorus and its activities have not been considered. Consequently, we undertook this study to better understand the mechanisms that bacterial strains employ to inhibit predation by B. bacteriovorus HD100. We report here that cyanogenic bacterial strains can inhibit predation and show that cyanide affects both attack-phase predators and those within prey, i.e., in the bdelloplast.


Asunto(s)
Bdellovibrio bacteriovorus/efectos de los fármacos , Bdellovibrio bacteriovorus/fisiología , Chromobacterium/fisiología , Cianuros/metabolismo , Interacciones Microbianas , Chromobacterium/metabolismo , Locomoción/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...