Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 141(15): 6254-6262, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30920818

RESUMEN

Replacement of Pt-based oxygen reduction reaction (ORR) catalysts with non-precious metal catalysts (NPMCs) such as Fe/N/C is one of the most important issues in the commercialization of proton exchange membrane fuel cells (PEMFCs). Despite numerous studies on Fe/N/C catalysts, a fundamental study on the development of a versatile strategy is still required for tuning the kinetic activity of a single Fe-N4 site. Herein, we report a new and intuitive design strategy for tuning and enhancing the kinetic activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane with the incorporation of sulfur functionalities. The effect of electron-withdrawing/donating functionalities was elucidated by experimentation and theoretical calculations. Finally, the introduction of an oxidized sulfur functionality decreases the d-band center of iron by withdrawing electrons, thereby facilitating ORR at the Fe-N4 site by lowering the intermediate adsorption energy. Furthermore, this strategy can enhance ORR activity without a decrease in the stability of the catalyst. This simple and straightforward approach can be a cornerstone to develop optimum NPMCs for application in the cathodes of PEMFCs.

2.
ACS Nano ; 12(6): 6013-6022, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29746097

RESUMEN

Lithium-sulfur (Li-S) batteries are regarded as potential high-energy storage devices due to their outstanding energy density. However, the low electrical conductivity of sulfur, dissolution of the active material, and sluggish reaction kinetics cause poor cycle stability and rate performance. A variety of approaches have been attempted to resolve the above issues and achieve enhanced electrochemical performance. However, inexpensive multifunctional host materials which can accommodate large quantities of sulfur and exhibit high electrode density are not widely available, which hinders the commercialization of Li-S batteries. Herein, mesoporous carbon microspheres with ultrahigh pore volume are synthesized, followed by the incorporation of Fe-N-C molecular catalysts into the mesopores, which can act as sulfur hosts. The ultrahigh pore volume of the prepared host material can accommodate up to ∼87 wt % sulfur, while the uniformly controlled spherical morphology and particle size of the carbon microspheres enable high areal/volumetric capacity with high electrode density. Furthermore, the uniform distribution of Fe-N-C (only 0.33 wt %) enhances the redox kinetics of the conversion reaction of sulfur and efficiently captures the soluble intermediates. The resulting electrode with 5.2 mg sulfur per cm2 shows excellent cycle stability and 84% retention of the initial capacity even after 500 cycles at a 3 C rate.

3.
ACS Nano ; 11(2): 1736-1746, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28081367

RESUMEN

Despite the extraordinary gravimetric energy densities, lithium-oxygen (Li-O2) batteries are still facing a technological challenge; limited round trip efficiency leading to insufficient cycle life. Recently, carbonaceous electrode materials were found to be one of the primary origins of the limited cycle life, as they produce irreversible side products during discharge. A few investigations based on noncarbonaceous materials have demonstrated largely suppressed accumulation of irreversible side products, but such studies have focused mainly on the materials themselves rather than delicate morphology control. As such, here, we report the synthesis of mesoporous titanium nitride (m-TiN) with a 2D hexagonal structure and large pores (>30 nm), which was templated by a block copolymer with tunable chain lengths, and introduce it as a stable air-cathode backbone. Due to the well-aligned pore structure and decent electric conductivity of TiN, the battery reaction was quite reversible, resulting in robust cycling performance for over 100 cycles under a potential cutoff condition. Furthermore, by protecting the Li metal with a poreless polyurethane separator and engaging a lithium iodide redox mediator, the original capacity was retained for 280 cycles under a consistent capacity condition (430 mAh g-1). This study reveals that when the appropriate structure and material choice of the air-cathode are coupled with an advanced separator and an effective solution-phase redox mediator, the cycle lives of Li-O2 batteries can be enhanced dramatically.

4.
ACS Nano ; 9(7): 7497-505, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26095456

RESUMEN

Hybrid supercapacitors (battery-supercapacitor hybrid devices, HSCs) deliver high energy within seconds (excellent rate capability) with stable cyclability. One of the key limitations in developing high-performance HSCs is imbalance in power capability between the sluggish Faradaic lithium-intercalation anode and rapid non-Faradaic capacitive cathode. To solve this problem, we synthesize Nb2O5@carbon core-shell nanocyrstals (Nb2O5@C NCs) as high-power anode materials with controlled crystalline phases (orthorhombic (T) and pseudohexagonal (TT)) via a facile one-pot synthesis method based on a water-in-oil microemulsion system. The synthesis of ideal T-Nb2O5 for fast Li(+) diffusion is simply achieved by controlling the microemulsion parameter (e.g., pH control). The T-Nb2O5@C NCs shows a reversible specific capacity of ∼180 mA h g(-1) at 0.05 A g(-1) (1.1-3.0 V vs Li/Li(+)) with rapid rate capability compared to that of TT-Nb2O5@C and carbon shell-free Nb2O5 NCs, mainly due to synergistic effects of (i) the structural merit of T-Nb2O5 and (ii) the conductive carbon shell for high electron mobility. The highest energy (∼63 W h kg(-1)) and power (16 528 W kg(-1) achieved at ∼5 W h kg(-1)) densities within the voltage range of 1.0-3.5 V of the HSC using T-Nb2O5@C anode and MSP-20 cathode are remarkable.

5.
Angew Chem Int Ed Engl ; 54(32): 9230-4, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26087961

RESUMEN

To promote the oxygen reduction reaction of metal-free catalysts, the introduction of porous structure is considered as a desirable approach because the structure can enhance mass transport and host many catalytic active sites. However, most of the previous studies reported only half-cell characterization; therefore, studies on membrane electrode assembly (MEA) are still insufficient. Furthermore, the effect of doping-site position in the structure has not been investigated. Here, we report the synthesis of highly active metal-free catalysts in MEAs by controlling pore size and doping-site position. Both influence the accessibility of reactants to doping sites, which affects utilization of doping sites and mass-transport properties. Finally, an N,P-codoped ordered mesoporous carbon with a large pore size and precisely controlled doping-site position showed a remarkable on-set potential and produced 70% of the maximum power density obtained using Pt/C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...