Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 51(47): 18224-18233, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399009

RESUMEN

The reactivity of alkali-manganese(II) and alkali trifluoroacetates towards amorphous SiO2 (a-SiO2) was studied in the solid-state. K4Mn2(tfa)8, Cs3Mn2(tfa)7(tfaH), KH(tfa)2, and CsH(tfa)2 (tfa = CF3COO-) were thermally decomposed under vacuum in fused quartz tubes. Three new bimetallic fluorotrifluoroacetates of formulas K4Mn3(tfa)9F, Cs4Mn3(tfa)9F, and K2Mn(tfa)3F were discovered upon thermolysis at 175 °C. K4Mn3(tfa)9F and Cs4Mn3(tfa)9F feature a triangular-bridged metal cluster of formula [Mn3(µ3-F)(µ2-tfa)6(tfa)3]4-. In the case of K2Mn(tfa)3F, fluoride serves as an inverse coordination center for the tetrahedral metal cluster K2Mn2(µ4-F). Fluorotrifluoroacetates may be regarded as intermediates in the transformation of bimetallic trifluoroacetates to fluoroperovskites KMnF3, CsMnF3, and Cs2MnF4, which crystallized between 250 and 600 °C. Decomposition of these trifluoroacetates also yielded alkali hexafluorosilicates K2SiF6 and Cs2SiF6 as a result of the fluorination of fused quartz. The ability to fluorinate fused quartz was observed for monometallic alkali trifluoroacetates as well. Hexafluorosilicates and heptafluorosilicates K3SiF7 and Cs3SiF7 were obtained upon thermolysis of KH(tfa)2 and CsH(tfa)2 between 200 and 400 °C. This ability was exploited to synthesize fluorosilicates under air by simply reacting alkali trifluoroacetates with a-SiO2 powder.

3.
Inorg Chem ; 61(14): 5588-5594, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35344656

RESUMEN

A series of new mixed-ligand lanthanide trifluoroacetates of formula Ln(4-cpno)(tfa)3(H2O)·H2O (Ln = Sm, Eu, Gd, Tb, Dy; 4-cpno = 4-cyanopyridine N-oxide; tfa = trifluoroacetate) is reported. Trifluoroacetates were synthesized as chemically pure polycrystalline solids and their crystal structures were probed using single-crystal and powder X-ray diffraction. Ln(4-cpno)(tfa)3(H2O)·H2O solids make up an isostructural series in which LnO8 polyhedra are bridged by 4-cpno to form edge-sharing dimers. Trifluoroacetato connects these dimers to yield chains whose three-dimensional packing is governed by hydrogen bonds established between 4-cpno, trifluoroacetato, and water. 4-cpno serves as an efficient sensitizer of lanthanide-centered luminescence. UV excitation of its singlet manifold and subsequent energy transfer to the 4f levels of the lanthanides yield orange (Sm), red (Eu), green (Tb), and yellow (Dy) emissions. Sensitization efficiencies reach 81 and 64% for Eu and Tb hybrids, respectively. Tb(4-cpno)(tfa)3(H2O)·H2O displays a quantum yield of 52%, which coupled to the high absorptivity of 4-cpno, makes it a bright-green emitter under 292 nm excitation. Lanthanide trifluoroacetates may therefore serve as hybrid solid-state light emitters provided that adequate sensitizers are identified.

4.
Dalton Trans ; 50(44): 16092-16098, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34636380

RESUMEN

A new synthetic route to access pristine and rare-earth-doped BaFBr nanocrystals is described. Central to this route is an organic-inorganic hybrid precursor of formula Ba5(CF2BrCOO)10(H2O)7 that serves as a dual-halogen source. Thermolysis of this precursor in a mixture of high-boiling point organic solvents yields spherical BaFBr nanocrystals (≈20 nm in diameter). Yb:Er:BaFBr nanocuboids (≈26 nm in length) are obtained following the same route. Rare-earth-doped nanocrystals display NIR-to-visible photon upconversion under 980 nm excitation. The temperature-dependence of the green emission from Er3+ may be exploited for optical temperature sensing between 150 and 450 K, achieving a sensitivity of 1.1 × 10-2 K-1 and a mean calculated temperature of 300.9 ± 1.5 K at 300 K. The synthetic route presented herein not only enables access to unexplored upconverting materials but also, and more importantly, creates the opportunity to develop solution-processable photostimulable phosphors based on BaFBr.

5.
Inorg Chem ; 59(23): 17268-17275, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33197311

RESUMEN

Four novel alkali-manganese(II) trifluoroacetates were synthesized, and their potential as self-fluorinating precursors to layered perovskites A2MnF4 (A = K, Rb, and Cs) was demonstrated. Na2Mn(tfa)4, K4Mn2(tfa)8, Rb4Mn2(tfa)8·0.23H2O, and Cs3Mn2(tfa)7(tfaH) (tfa = CF3COO- and tfaH = CF3COOH) were grown as single crystals, and their crystal structures solved using X-ray diffraction. Chemically pure K4Mn2(tfa)8, Rb4Mn2(tfa)8·0.23H2O, and Cs3Mn2(tfa)7(tfaH) were also prepared in polycrystalline form as confirmed by thermal analysis and powder X-ray diffraction. Thermolysis of these powders yielded the isostructural series K2MnF4, Rb2MnF4, and Cs2MnF4 at low temperatures (≈200-300 °C). Trifluoromethyl groups belonging to the trifluoroacetato ligands served as the fluorine source, thereby eliminating the need for external fluorinating agents. K2MnF4 and Rb2MnF4 were obtained as single-phase powders, whereas Cs2MnF4 crystallized along with CsMnF3. Access to polycrystalline Cs2MnF4 coupled to Rietveld analysis enabled elucidation of the crystal structure of this ternary fluoride, which had remained elusive. Findings presented in this article expand the synthetic accessibility of polycrystalline A2MnF4 fluorides, for which a scarce number of routes is available in the literature.

6.
Dalton Trans ; 49(23): 7914-7919, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32490448

RESUMEN

A synthetic method was developed to enable the microwave-assisted solid-state preparation of double molybdate and double tungstate scheelite-type phosphors of formula NaRE(MO4)2 (RE = La, Pr, Eu, Dy; M = Mo, W). Starting from subgram-scale stoichiometric mixtures of metal carbonates and oxides and with the aid of granular activated charcoal as a microwave susceptor, ternary (NaEu(MO4)2), quaternary (NaLa0.95Eu0.05(MO4)2), and quinary phosphors (NaLa0.95Pr0.025Dy0.025(MO4)2) were obtained upon heating in a countertop microwave oven. The synthesis of crystalline and phase-pure materials required heating times ranging from 18 to 27 min, significantly shorter than those typically encountered in solid-state reactions assisted by conventional heating. Depending on chemical composition, the speed-up factor ranged from 30 to 40. More importantly, photoluminescence studies performed on the compositionally complex quinary molybdate NaLa0.95Pr0.025Dy0.025(MoO4)2 showed that phosphors synthesized using microwave and conventional heating have nearly identical luminescence responses. The synthetic method described in this contribution is robust, fast, simple, and ideally suited for exploratory synthesis and rapid screening of group VI metalate phosphors, as well as for the preparation of binary precursors to these materials (e.g., Na2MoO4 and Na2WO4).

7.
Inorg Chem ; 56(21): 13311-13320, 2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-29016114

RESUMEN

Alkali-manganese(II) trifluoroacetates were synthesized, and their potential as single-source precursors for the solid-state and solution-phase synthesis of AMnF3 fluoroperovskites (A = Na, K, Rb, Cs) was demonstrated. Crystals of Na2Mn2(tfa)6(tfaH), K2Mn2(tfa)6(tfaH)2·H2O, Rb2Mn2(tfa)6·H2O, and CsMn(tfa)3 (tfa = trifluoroacetato) were grown via solvent evaporation and their crystal structures solved using single-crystal X-ray diffraction (XRD). Chemical purity was confirmed using thermal analyses (TGA/DTA) and Rietveld analysis of powder XRD patterns. Thermal decomposition of Na2Mn2(tfa)6(tfaH), K2Mn2(tfa)6(tfaH)2·H2O, Rb2Mn2(tfa)6·H2O, and CsMn(tfa)3 in both the solid state and solution phase yielded crystalline, single-phase NaMnF3, KMnF3, RbMnF3, and CsMnF3 fluoroperovskites, respectively. Nanocrystals (<100 nm) and submicrocrystals (<500 nm) were obtained in a mixture of high-boiling-point organic solvents. Crystal structures of bimetallic trifluoroacetates displayed a variety of building blocks, coordination environments of the alkali atoms, and coordination modes of the trifluoroacetato ligand. Alkali-fluorine interactions ranging from chemical bonds to short contacts were observed throughout the series. The coordination flexibility of the trifluoroacetato ligand was attributed to the ability of the -CF3 groups to interact with alkali atoms over a broad range of distances. The synthetic approach described in this investigation provides a starting point to expand the library of fluorinated single-source precursors suitable for solution-phase routes to mixed-metal fluorides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...