Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37307561

RESUMEN

Understanding the impacts of selection pressures influencing modern-day genomic diversity is a major goal of evolutionary genomics. In particular, the contribution of selective sweeps to adaptation remains an open question, with persistent statistical limitations on the power and specificity of sweep detection methods. Sweeps with subtle genomic signals have been particularly challenging to detect. Although many existing methods powerfully detect specific types of sweeps and/or those with strong signals, their power comes at the expense of versatility. We present Flex-sweep, a machine learning-based tool designed to detect sweeps with a variety of subtle signals, including those thousands of generations old. It is especially valuable for nonmodel organisms, for which we have neither expectations about the overall characteristics of sweeps nor outgroups with population-level sequencing to otherwise facilitate detecting very old sweeps. We show that Flex-sweep has the power to detect sweeps with subtle signals, even in the face of demographic model misspecification, recombination rate heterogeneity, and background selection. Flex-sweep detects sweeps up to 0.125*4Ne generations old, including those that are weak, soft, and/or incomplete; it can also detect strong, complete sweeps up to 0.25*4Ne generations old. We apply Flex-sweep to the 1000 Genomes Yoruba data set and, in addition to recovering previously identified sweeps, show that sweeps disproportionately occur within genic regions and are close to regulatory regions. In addition, we show that virus-interacting proteins (VIPs) are strongly enriched for selective sweeps, recapitulating previous results that demonstrate the importance of viruses as a driver of adaptive evolution in humans.


Asunto(s)
Genómica , Selección Genética , Humanos , Genómica/métodos , Genoma Humano , Modelos Genéticos , Genética de Población
2.
Science ; 380(6648): eabn8153, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37262153

RESUMEN

Baboons (genus Papio) are a morphologically and behaviorally diverse clade of catarrhine monkeys that have experienced hybridization between phenotypically and genetically distinct phylogenetic species. We used high-coverage whole-genome sequences from 225 wild baboons representing 19 geographic localities to investigate population genomics and interspecies gene flow. Our analyses provide an expanded picture of evolutionary reticulation among species and reveal patterns of population structure within and among species, including differential admixture among conspecific populations. We describe the first example of a baboon population with a genetic composition that is derived from three distinct lineages. The results reveal processes, both ancient and recent, that produced the observed mismatch between phylogenetic relationships based on matrilineal, patrilineal, and biparental inheritance. We also identified several candidate genes that may contribute to species-specific phenotypes.


Asunto(s)
Evolución Biológica , Flujo Génico , Papio , Animales , Masculino , Papio/anatomía & histología , Papio/genética , Fenotipo , Filogenia , Especificidad de la Especie , Caracteres Sexuales
3.
Science ; 380(6648): eabn4409, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37262154

RESUMEN

Incomplete lineage sorting (ILS) causes the phylogeny of some parts of the genome to differ from the species tree. In this work, we investigate the frequencies and determinants of ILS in 29 major ancestral nodes across the entire primate phylogeny. We find up to 64% of the genome affected by ILS at individual nodes. We exploit ILS to reconstruct speciation times and ancestral population sizes. Estimated speciation times are much more recent than genomic divergence times and are in good agreement with the fossil record. We show extensive variation of ILS along the genome, mainly driven by recombination but also by the distance to genes, highlighting a major impact of selection on variation along the genome. In many nodes, ILS is reduced more on the X chromosome compared with autosomes than expected under neutrality, which suggests higher impacts of natural selection on the X chromosome. Finally, we show an excess of ILS in genes with immune functions and a deficit of ILS in housekeeping genes. The extensive ILS in primates discovered in this study provides insights into the speciation times, ancestral population sizes, and patterns of natural selection that shape primate evolution.


Asunto(s)
Especiación Genética , Variación Genética , Genoma , Primates , Animales , Genómica , Filogenia , Primates/genética
4.
bioRxiv ; 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37205419

RESUMEN

Baboons (genus Papio ) are a morphologically and behaviorally diverse clade of catarrhine monkeys that have experienced hybridization between phenotypically and genetically distinct phylogenetic species. We used high coverage whole genome sequences from 225 wild baboons representing 19 geographic localities to investigate population genomics and inter-species gene flow. Our analyses provide an expanded picture of evolutionary reticulation among species and reveal novel patterns of population structure within and among species, including differential admixture among conspecific populations. We describe the first example of a baboon population with a genetic composition that is derived from three distinct lineages. The results reveal processes, both ancient and recent, that produced the observed mismatch between phylogenetic relationships based on matrilineal, patrilineal, and biparental inheritance. We also identified several candidate genes that may contribute to species-specific phenotypes. One-Sentence Summary: Genomic data for 225 baboons reveal novel sites of inter-species gene flow and local effects due to differences in admixture.

5.
Cell Genom ; 3(3): 100274, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36950386

RESUMEN

The X chromosome in non-African humans shows less diversity and less Neanderthal introgression than expected from neutral evolution. Analyzing 162 human male X chromosomes worldwide, we identified fourteen chromosomal regions where nearly identical haplotypes spanning several hundred kilobases are found at high frequencies in non-Africans. Genetic drift alone cannot explain the existence of these haplotypes, which must have been associated with strong positive selection in partial selective sweeps. Moreover, the swept haplotypes are entirely devoid of archaic ancestry as opposed to the non-swept haplotypes in the same genomic regions. The ancient Ust'-Ishim male dated at 45,000 before the present (BP) also carries the swept haplotypes, implying that selection on the haplotypes must have occurred between 45,000 and 55,000 years ago. Finally, we find that the chromosomal positions of sweeps overlap previously reported hotspots of selective sweeps in great ape evolution, suggesting a mechanism of selection unique to X chromosomes.

6.
Genome Biol ; 21(1): 159, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616020

RESUMEN

BACKGROUND: Despite their regional economic importance and being increasingly reared globally, the origins and evolution of the llama and alpaca remain poorly understood. Here we report reference genomes for the llama, and for the guanaco and vicuña (their putative wild progenitors), compare these with the published alpaca genome, and resequence seven individuals of all four species to better understand domestication and introgression between the llama and alpaca. RESULTS: Phylogenomic analysis confirms that the llama was domesticated from the guanaco and the alpaca from the vicuña. Introgression was much higher in the alpaca genome (36%) than the llama (5%) and could be dated close to the time of the Spanish conquest, approximately 500 years ago. Introgression patterns are at their most variable on the X-chromosome of the alpaca, featuring 53 genes known to have deleterious X-linked phenotypes in humans. Strong genome-wide introgression signatures include olfactory receptor complexes into both species, hypertension resistance into alpaca, and fleece/fiber traits into llama. Genomic signatures of domestication in the llama include male reproductive traits, while in alpaca feature fleece characteristics, olfaction-related and hypoxia adaptation traits. Expression analysis of the introgressed region that is syntenic to human HSA4q21, a gene cluster previously associated with hypertension in humans under hypoxic conditions, shows a previously undocumented role for PRDM8 downregulation as a potential transcriptional regulation mechanism, analogous to that previously reported at high altitude for hypoxia-inducible factor 1α. CONCLUSIONS: The unprecedented introgression signatures within both domestic camelid genomes may reflect post-conquest changes in agriculture and the breakdown of traditional management practices.


Asunto(s)
Evolución Biológica , Camélidos del Nuevo Mundo/genética , Domesticación , Introgresión Genética , Genoma , Adaptación Biológica , Animales , Femenino , Masculino , Filogeografía , Selección Genética , América del Sur
7.
Methods Mol Biol ; 2090: 453-463, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31975179

RESUMEN

The great apes play an important role as model organisms. They are our closest living relatives, allowing us to identify the genetic basis of phenotypic traits that we think of as characteristically human. However, the most significant asset of great apes as model organisms is that they share with humans most of their genetic makeup. This means that we can extend our vast knowledge of the human genome, its genes, and the associated phenotypes to these species. Comparative genomic studies of humans and apes thus reveal how very similar genomes react when exposed to different population genetic regimes. In this way, each species represents a natural experiment, where a genome highly similar to the human one, is differently exposed to the evolutionary forces of demography, population structure, selection, recombination, and admixture/hybridization. The initial sequencing of reference genomes for chimpanzee, orangutan, gorilla, the bonobo, each provided new insights and a second generation of sequencing projects has provided diversity data for all the great apes. In this chapter, we will outline some of the findings that population genomic analysis of great apes has provided, and how comparative studies have helped us understand how the fundamental forces in evolution have contributed to shaping the genomes and the genetic diversity of the great apes.


Asunto(s)
Variación Genética , Genómica/métodos , Hominidae/genética , Animales , Evolución Molecular , Genética de Población , Hominidae/clasificación , Humanos , Fenotipo
8.
Genome Biol Evol ; 12(1): 3550-3561, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31596481

RESUMEN

DNA diversity varies across the genome of many species. Variation in diversity across a genome might arise from regional variation in the mutation rate, variation in the intensity and mode of natural selection, and regional variation in the recombination rate. We show that both noncoding and nonsynonymous diversity are positively correlated to a measure of the mutation rate and the recombination rate and negatively correlated to the density of conserved sequences in 50 kb windows across the genomes of humans and nonhuman homininae. Interestingly, we find that although noncoding diversity is equally affected by these three genomic variables, nonsynonymous diversity is mostly dominated by the density of conserved sequences. The positive correlation between diversity and our measure of the mutation rate seems to be largely a direct consequence of regions with higher mutation rates having more diversity. However, the positive correlation with recombination rate and the negative correlation with the density of conserved sequences suggest that selection at linked sites also affect levels of diversity. This is supported by the observation that the ratio of the number of nonsynonymous to noncoding polymorphisms is negatively correlated to a measure of the effective population size across the genome. We show these patterns persist even when we restrict our analysis to GC-conservative mutations, demonstrating that the patterns are not driven by GC biased gene conversion. In conclusion, our comparative analyses describe how recombination rate, gene density, and mutation rate interact to produce the patterns of DNA diversity that we observe along the hominine genomes.


Asunto(s)
Variación Genética , Genoma Humano , Hominidae/genética , Tasa de Mutación , Animales , Secuencia de Bases , Secuencia Conservada , ADN/química , Conversión Génica , Genoma , Humanos , Recombinación Genética , Selección Genética
9.
Genetics ; 213(3): 953-966, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31488516

RESUMEN

The distribution of fitness effects (DFE) is central to many questions in evolutionary biology. However, little is known about the differences in DFE between closely related species. We use >9000 coding genes orthologous one-to-one across great apes, gibbons, and macaques to assess the stability of the DFE across great apes. We use the unfolded site frequency spectrum of polymorphic mutations (n = 8 haploid chromosomes per population) to estimate the DFE. We find that the shape of the deleterious DFE is strikingly similar across great apes. We confirm that effective population size (Ne ) is a strong predictor of the strength of negative selection, consistent with the nearly neutral theory. However, we also find that the strength of negative selection varies more than expected given the differences in Ne between species. Across species, mean fitness effects of new deleterious mutations covaries with Ne , consistent with positive epistasis among deleterious mutations. We find that the strength of negative selection for the smallest populations, bonobos and western chimpanzees, is higher than expected given their Ne This may result from a more efficient purging of strongly deleterious recessive variants in these populations. Forward simulations confirm that these findings are not artifacts of the way we are inferring Ne and DFE parameters. All findings are replicated using only GC-conservative mutations, thereby confirming that GC-biased gene conversion is not affecting our conclusions.


Asunto(s)
Aptitud Genética , Hominidae/genética , Mutación Missense , Selección Genética , Animales , Epistasis Genética , Evolución Molecular
10.
Sci Adv ; 5(1): eaau6947, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30854422

RESUMEN

Recent studies suggest that closely related species can accumulate substantial genetic and phenotypic differences despite ongoing gene flow, thus challenging traditional ideas regarding the genetics of speciation. Baboons (genus Papio) are Old World monkeys consisting of six readily distinguishable species. Baboon species hybridize in the wild, and prior data imply a complex history of differentiation and introgression. We produced a reference genome assembly for the olive baboon (Papio anubis) and whole-genome sequence data for all six extant species. We document multiple episodes of admixture and introgression during the radiation of Papio baboons, thus demonstrating their value as a model of complex evolutionary divergence, hybridization, and reticulation. These results help inform our understanding of similar cases, including modern humans, Neanderthals, Denisovans, and other ancient hominins.


Asunto(s)
Evolución Biológica , Genómica/métodos , Papio/genética , Animales , Secuencia de Bases , Femenino , Flujo Génico , Haplotipos/genética , Humanos , Hibridación Genética , Masculino , Filogenia , Polimorfismo Genético , Secuenciación Completa del Genoma
11.
Genetics ; 209(3): 907-920, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29769284

RESUMEN

Ampliconic genes are multicopy, with the majority found on sex chromosomes and enriched for testis-expressed genes. While ampliconic genes have been associated with the emergence of hybrid incompatibilities, we know little about their copy number distribution and their turnover in human populations. Here, we explore the evolution of human X- and Y-linked ampliconic genes by investigating copy number variation (CNV) and coding variation between populations using the Simons Genome Diversity Project. We develop a method to assess CNVs using the read depth on modified X and Y chromosome targets containing only one repetition of each ampliconic gene. Our results reveal extensive standing variation in copy number both within and between human populations for several ampliconic genes. For the Y chromosome, we can infer multiple independent amplifications and losses of these gene copies even within closely related Y haplogroups, that diversified < 50,000 years ago. Moreover, X- and Y-linked ampliconic genes seem to have a faster amplification dynamic than autosomal multicopy genes. Looking at expression data from another study, we also find that X- and Y-linked ampliconic genes with extensive CNV are significantly more expressed than genes with no CNV during meiotic sex chromosome inactivation (for both X and Y) and postmeiotic sex chromosome repression (for the Y chromosome only). While we cannot rule out that the XY-linked ampliconic genes are evolving neutrally, this study gives insights into the distribution of copy number within human populations and demonstrates an extremely fast turnover in copy number of these regions.


Asunto(s)
Cromosomas Humanos X/genética , Cromosomas Humanos Y/genética , Dosificación de Gen , Genes Ligados a X , Genes Ligados a Y , Biología Computacional/métodos , Evolución Molecular , Femenino , Genética de Población , Humanos , Masculino , Meiosis , Familia de Multigenes
12.
Proc Natl Acad Sci U S A ; 115(11): E2566-E2574, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29483247

RESUMEN

Elephantids are the world's most iconic megafaunal family, yet there is no comprehensive genomic assessment of their relationships. We report a total of 14 genomes, including 2 from the American mastodon, which is an extinct elephantid relative, and 12 spanning all three extant and three extinct elephantid species including an ∼120,000-y-old straight-tusked elephant, a Columbian mammoth, and woolly mammoths. Earlier genetic studies modeled elephantid evolution via simple bifurcating trees, but here we show that interspecies hybridization has been a recurrent feature of elephantid evolution. We found that the genetic makeup of the straight-tusked elephant, previously placed as a sister group to African forest elephants based on lower coverage data, in fact comprises three major components. Most of the straight-tusked elephant's ancestry derives from a lineage related to the ancestor of African elephants while its remaining ancestry consists of a large contribution from a lineage related to forest elephants and another related to mammoths. Columbian and woolly mammoths also showed evidence of interbreeding, likely following a latitudinal cline across North America. While hybridization events have shaped elephantid history in profound ways, isolation also appears to have played an important role. Our data reveal nearly complete isolation between the ancestors of the African forest and savanna elephants for ∼500,000 y, providing compelling justification for the conservation of forest and savanna elephants as separate species.


Asunto(s)
Elefantes/genética , Mamuts/genética , Mastodontes/genética , Animales , Elefantes/clasificación , Evolución Molecular , Extinción Biológica , Fósiles , Flujo Génico , Genoma , Genómica/historia , Historia Antigua , Mamuts/clasificación , Mastodontes/clasificación , Filogenia
13.
Proc Natl Acad Sci U S A ; 114(7): 1613-1618, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137852

RESUMEN

Quantifying the number of selective sweeps and their combined effects on genomic diversity in humans and other great apes is notoriously difficult. Here we address the question using a comparative approach to contrast diversity patterns according to the distance from genes in all great ape taxa. The extent of diversity reduction near genes compared with the rest of intergenic sequences is greater in a species with larger effective population size. Also, the maximum distance from genes at which the diversity reduction is observed is larger in species with large effective population size. In Sumatran orangutans, the overall genomic diversity is ∼30% smaller than diversity levels far from genes, whereas this reduction is only 9% in humans. We show by simulation that selection against deleterious mutations in the form of background selection is not expected to cause these differences in diversity among species. Instead, selective sweeps caused by positive selection can reduce diversity level more severely in a large population if there is a higher number of selective sweeps per unit time. We discuss what can cause such a correlation, including the possibility that more frequent sweeps in larger populations are due to a shorter waiting time for the right mutations to arise.


Asunto(s)
Genoma/genética , Hominidae/genética , Modelos Genéticos , Selección Genética , Animales , Evolución Molecular , Hominidae/clasificación , Humanos , Polimorfismo de Nucleótido Simple , Densidad de Población , Especificidad de la Especie
14.
Mol Biol Evol ; 33(12): 3065-3074, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27660295

RESUMEN

The contribution from selective sweeps to variation in genetic diversity has proven notoriously difficult to assess, in part because polymorphism data only allows detection of sweeps in the most recent few hundred thousand years. Here, we show how linked selection in ancestral species can be quantified across evolutionary timescales by analyzing patterns of incomplete lineage sorting (ILS) along the genomes of closely related species. We show that sweeps in the human-chimpanzee and human-orangutan ancestors can be identified as depletions of ILS in regions in excess of 100 kb in length. Sweeps predicted in each ancestral species, as well as recurrent sweeps predicted in both species, often overlap sweeps predicted in humans. This suggests that many genomic regions experience recurrent selective sweeps. By comparing the ILS patterns along the genomes of the closely related human-chimpanzee and human-orangutan ancestors, we are further able to quantify the impact of selective sweeps relative to that of background selection. Compared with the human-orangutan ancestor, the human-chimpanzee ancestor shows a strong excess of regions depleted of ILS as well as a stronger reduction in ILS around genes. We conclude that sweeps play a strong role in reducing diversity along the genome and that sweeps have reduced diversity in the human-chimpanzee ancestor much more than in the human-orangutan ancestor.


Asunto(s)
Evolución Biológica , Primates/genética , Animales , Especiación Genética , Variación Genética , Genómica/métodos , Humanos , Modelos Genéticos , Polimorfismo Genético , Primates/metabolismo , Selección Genética , Análisis de Secuencia de ADN/métodos
15.
PLoS Genet ; 11(8): e1005451, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26274919

RESUMEN

The human and chimpanzee X chromosomes are less divergent than expected based on autosomal divergence. We study incomplete lineage sorting patterns between humans, chimpanzees and gorillas to show that this low divergence can be entirely explained by megabase-sized regions comprising one-third of the X chromosome, where polymorphism in the human-chimpanzee ancestral species was severely reduced. We show that background selection can explain at most 10% of this reduction of diversity in the ancestor. Instead, we show that several strong selective sweeps in the ancestral species can explain it. We also report evidence of population specific sweeps in extant humans that overlap the regions of low diversity in the ancestral species. These regions further correspond to chromosomal sections shown to be devoid of Neanderthal introgression into modern humans. This suggests that the same X-linked regions that undergo selective sweeps are among the first to form reproductive barriers between diverging species. We hypothesize that meiotic drive is the underlying mechanism causing these two observations.


Asunto(s)
Cromosomas Humanos X/genética , Animales , Femenino , Flujo Genético , Especiación Genética , Variación Genética , Humanos , Masculino , Hombre de Neandertal , Recombinación Genética , Selección Genética , Especificidad de la Especie
16.
Proc Natl Acad Sci U S A ; 112(20): 6413-8, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941379

RESUMEN

The unique inheritance pattern of the X chromosome exposes it to natural selection in a way that is different from that of the autosomes, potentially resulting in accelerated evolution. We perform a comparative analysis of X chromosome polymorphism in 10 great ape species, including humans. In most species, we identify striking megabase-wide regions, where nucleotide diversity is less than 20% of the chromosomal average. Such regions are found exclusively on the X chromosome. The regions overlap partially among species, suggesting that the underlying targets are partly shared among species. The regions have higher proportions of singleton SNPs, higher levels of population differentiation, and a higher nonsynonymous-to-synonymous substitution ratio than the rest of the X chromosome. We show that the extent to which diversity is reduced is incompatible with direct selection or the action of background selection and soft selective sweeps alone, and therefore, we suggest that very strong selective sweeps have independently targeted these specific regions in several species. The only genomic feature that we can identify as strongly associated with loss of diversity is the location of testis-expressed ampliconic genes, which also have reduced diversity around them. We hypothesize that these genes may be responsible for selective sweeps in the form of meiotic drive caused by an intragenomic conflict in male meiosis.


Asunto(s)
Variación Genética , Hominidae/genética , Polimorfismo Genético , Selección Genética/genética , Cromosoma X/genética , Animales , Biología Computacional , Bases de Datos Genéticas , Genética de Población , Modelos Genéticos , Especificidad de la Especie
17.
Genome Biol Evol ; 7(4): 1122-32, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25829516

RESUMEN

We study genome-wide nucleotide diversity in three subspecies of extant chimpanzees using exome capture. After strict filtering, Single Nucleotide Polymorphisms and indels were called and genotyped for greater than 50% of exons at a mean coverage of 35× per individual. Central chimpanzees (Pan troglodytes troglodytes) are the most polymorphic (nucleotide diversity, θw = 0.0023 per site) followed by Eastern (P. t. schweinfurthii) chimpanzees (θw = 0.0016) and Western (P. t. verus) chimpanzees (θw = 0.0008). A demographic scenario of divergence without gene flow fits the patterns of autosomal synonymous nucleotide diversity well except for a signal of recent gene flow from Western into Eastern chimpanzees. The striking contrast in X-linked versus autosomal polymorphism and divergence previously reported in Central chimpanzees is also found in Eastern and Western chimpanzees. We show that the direction of selection statistic exhibits a strong nonmonotonic relationship with the strength of purifying selection S, making it inappropriate for estimating S. We instead use counts in synonymous versus nonsynonymous frequency classes to infer the distribution of S coefficients acting on nonsynonymous mutations in each subspecies. The strength of purifying selection we infer is congruent with the differences in effective sizes of each subspecies: Central chimpanzees are undergoing the strongest purifying selection followed by Eastern and Western chimpanzees. Coding indels show stronger selection against indels changing the reading frame than observed in human populations.


Asunto(s)
Pan troglodytes/genética , Selección Genética , Animales , Demografía , Exoma , Exones , Aptitud Genética , Genómica , Humanos , Mutación INDEL , Pan troglodytes/clasificación , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
18.
Science ; 346(6215): 1320-31, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25504713

RESUMEN

To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.


Asunto(s)
Aves/genética , Genoma , Filogenia , Animales , Proteínas Aviares/genética , Secuencia de Bases , Evolución Biológica , Aves/clasificación , Elementos Transponibles de ADN , Genes , Especiación Genética , Mutación INDEL , Intrones , Análisis de Secuencia de ADN
19.
Annu Rev Genet ; 48: 519-35, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25251849

RESUMEN

Recombination allows different parts of the genome to have different genealogical histories. When a species splits in two, allelic lineages sort into the two descendant species, and this lineage sorting varies along the genome. If speciation events are close in time, the lineage sorting process may be incomplete at the second speciation event and lead to gene genealogies that do not match the species phylogeny. We review different recent approaches to model lineage sorting along the genome and show how it is possible to learn about population sizes, natural selection, and recombination rates in ancestral species from application of these models to genome alignments of great ape species.


Asunto(s)
Evolución Molecular , Hominidae/genética , Recombinación Genética , Selección Genética/genética , Animales , Especiación Genética , Genoma , Filogenia
20.
Mol Ecol ; 23(19): 4785-98, 2014 10.
Artículo en Inglés | MEDLINE | ID: mdl-25155907

RESUMEN

The importance of speciation-with-geneflow scenarios is increasingly appreciated. However, the specific processes and the resulting genomic footprints of selection are subject to much discussion. We studied the genomics of speciation between the two panmictic, sympatrically spawning sister species; European (Anguilla anguilla) and American eel (A. rostrata). Divergence is assumed to have initiated more than 3 Ma, and although low gene flow still occurs, strong postzygotic barriers are present. Restriction-site-associated DNA (RAD) sequencing identified 328 300 SNPs for subsequent analysis. However, despite the presence of 3757 strongly differentiated SNPs (FST > 0.8), sliding window analyses of FST showed no larger genomic regions (i.e. hundreds of thousands to millions of bases) of elevated differentiation. Overall FST was 0.041, and linkage disequilibrium was virtually absent for SNPs separated by more than 1000 bp. We suggest this to reflect a case of genomic hitchhiking, where multiple regions are under directional selection between the species. However, low but biologically significant gene flow and high effective population sizes leading to very low genetic drift preclude accumulation of strong background differentiation. Genes containing candidate SNPs for positive selection showed significant enrichment for gene ontology (GO) terms relating to developmental processes and phosphorylation, which seems consistent with assumptions that differences in larval phase duration and migratory distances underlie speciation. Most SNPs under putative selection were found outside coding regions, lending support to emerging views that noncoding regions may be more functionally important than previously assumed. In total, the results demonstrate the necessity of interpreting genomic footprints of selection in the context of demographic parameters and life-history features of the studied species.


Asunto(s)
Anguilla/genética , Especiación Genética , Selección Genética , Anguilla/clasificación , Animales , Flujo Génico , Flujo Genético , Genómica/métodos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Simpatría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...