Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 23(11): 3327-3339, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29898402

RESUMEN

How cells adapt to varying environmental conditions is largely unknown. Here, we show that, in budding yeast, the RNA-binding and stress granule protein Pub1 has an intrinsic property to form condensates upon starvation or heat stress and that condensate formation is associated with cell-cycle arrest. Release from arrest coincides with condensate dissolution, which takes minutes (starvation) or hours (heat shock). In vitro reconstitution reveals that the different dissolution rates of starvation- and heat-induced condensates are due to their different material properties: starvation-induced Pub1 condensates form by liquid-liquid demixing and subsequently convert into reversible gel-like particles; heat-induced condensates are more solid-like and require chaperones for disaggregation. Our data suggest that different physiological stresses, as well as stress durations and intensities, induce condensates with distinct physical properties and thereby define different modes of stress adaptation and rates of recovery.


Asunto(s)
Adaptación Fisiológica , Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Concentración de Iones de Hidrógeno , Chaperonas Moleculares/metabolismo , Proteínas de Unión a Poli(A)/química , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Temperatura
2.
Nat Cell Biol ; 20(3): 344-351, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29403036

RESUMEN

Recent advances in cell biology enable precise molecular perturbations. The spatiotemporal organization of cells and organisms, however, also depends on physical processes such as diffusion or cytoplasmic flows, and strategies to perturb physical transport inside cells are not yet available. Here, we demonstrate focused-light-induced cytoplasmic streaming (FLUCS). FLUCS is local, directional, dynamic, probe-free, physiological, and is even applicable through rigid egg shells or cell walls. We explain FLUCS via time-dependent modelling of thermoviscous flows. Using FLUCS, we demonstrate that cytoplasmic flows drive partitioning-defective protein (PAR) polarization in Caenorhabditis elegans zygotes, and that cortical flows are sufficient to transport PAR domains and invert PAR polarity. In addition, we find that asymmetric cell division is a binary decision based on gradually varying PAR polarization states. Furthermore, the use of FLUCS for active microrheology revealed a metabolically induced fluid-to-solid transition of the yeast cytoplasm. Our findings establish how a wide range of transport-dependent models of cellular organization become testable by FLUCS.


Asunto(s)
Caenorhabditis elegans/fisiología , Corriente Citoplasmática , Análisis de la Célula Individual/métodos , Cigoto/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/efectos de la radiación , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Corriente Citoplasmática/efectos de la radiación , Rayos Infrarrojos , Rayos Láser , Modelos Biológicos , Fenotipo , Reología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual/instrumentación , Factores de Tiempo , Cigoto/citología , Cigoto/metabolismo , Cigoto/efectos de la radiación
3.
Elife ; 52016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27003292

RESUMEN

Cells can enter into a dormant state when faced with unfavorable conditions. However, how cells enter into and recover from this state is still poorly understood. Here, we study dormancy in different eukaryotic organisms and find it to be associated with a significant decrease in the mobility of organelles and foreign tracer particles. We show that this reduced mobility is caused by an influx of protons and a marked acidification of the cytoplasm, which leads to widespread macromolecular assembly of proteins and triggers a transition of the cytoplasm to a solid-like state with increased mechanical stability. We further demonstrate that this transition is required for cellular survival under conditions of starvation. Our findings have broad implications for understanding alternative physiological states, such as quiescence and dormancy, and create a new view of the cytoplasm as an adaptable fluid that can reversibly transition into a protective solid-like state.


Asunto(s)
Citoplasma/química , Citoplasma/efectos de los fármacos , Dictyostelium/fisiología , Transición de Fase/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Supervivencia Celular , Concentración de Iones de Hidrógeno , Estrés Fisiológico
4.
J Biotechnol ; 195: 60-6, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25554634

RESUMEN

In search of alternative expression platforms heterologous protein production in microalgae has gained increasing importance in the last years. Particularly, the chloroplast of the green alga Chlamydomonas reinhardtii has been adopted to successfully express foreign proteins like vaccines and antibodies. However, when compared with other expression systems, the development of the algal chloroplast to a powerful production platform for recombinant proteins is still in its early stages. In an effort to further improve methods for a reliable and rapid generation of transplastomic Chlamydomonas strains we constructed the key plasmid pMM2 containing the psbA gene and a multiple cloning site for foreign gene insertion. The psbA gene allows a marker-free selection procedure using as a recipient the Fud7 strain of Chlamydomonas, which grows on media containing acetate as a carbon source, but is unable to grow photoautotrophically due to the lack of an intact psbA gene. Biolistic transformation of Fud7 with vectors containing this gene restores photoautotrophic growth and thus permits selection in the light on media without carbon sources and antibiotics. The multiple cloning site with a BsaI recognition sequence allows type IIs restriction enzyme-based modular cloning which rapidly generates new gene constructs without sequences, which could influence the expression and characteristics of the foreign protein. In order to demonstrate the feasibility of this approach, a codon optimized version of the gene for the bacterial protein MPT64 has been integrated into the plastome. Several strains with different promoter/UTR combinations show a stable expression of the HA tagged MPT64 protein in Chlamydomonas chloroplasts.


Asunto(s)
Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes/genética , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Vectores Genéticos/genética , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/metabolismo , Transfección
5.
Elife ; 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24771766

RESUMEN

One of the key questions in biology is how the metabolism of a cell responds to changes in the environment. In budding yeast, starvation causes a drop in intracellular pH, but the functional role of this pH change is not well understood. Here, we show that the enzyme glutamine synthetase (Gln1) forms filaments at low pH and that filament formation leads to enzymatic inactivation. Filament formation by Gln1 is a highly cooperative process, strongly dependent on macromolecular crowding, and involves back-to-back stacking of cylindrical homo-decamers into filaments that associate laterally to form higher order fibrils. Other metabolic enzymes also assemble into filaments at low pH. Hence, we propose that filament formation is a general mechanism to inactivate and store key metabolic enzymes during a state of advanced cellular starvation. These findings have broad implications for understanding the interplay between nutritional stress, the metabolism and the physical organization of a cell.

6.
J Neurochem ; 127(4): 438-52, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23600759

RESUMEN

Several neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), or prion diseases, are known for their intimate association with protein misfolding and aggregation. These disorders are characterized by the loss of specific neuronal populations in the brain and are highly associated with aging, suggesting a decline in proteostasis capacity may contribute to pathogenesis. Nevertheless, the precise molecular mechanisms that lead to the selective demise of neurons remain poorly understood. As a consequence, appropriate therapeutic approaches and effective treatments are largely lacking. The development of cellular and animal models that faithfully reproduce central aspects of neurodegeneration has been crucial for advancing our understanding of these diseases. Approaches involving the sequential use of different model systems, starting with simpler cellular models and ending with validation in more complex animal models, resulted in the discovery of promising therapeutic targets and small molecules with therapeutic potential. Within this framework, the simple and well-characterized eukaryote Saccharomyces cerevisiae, also known as budding yeast, is being increasingly used to study the molecular basis of several neurodegenerative disorders. Yeast provides an unprecedented toolbox for the dissection of complex biological processes and pathways. Here, we summarize how yeast models are adding to our current understanding of several neurodegenerative disorders.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Deficiencias en la Proteostasis/metabolismo , Saccharomyces cerevisiae/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Priones/metabolismo , Pliegue de Proteína , Deficiencias en la Proteostasis/patología
7.
Mol Biol Cell ; 23(16): 3041-56, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22718905

RESUMEN

Acute stress causes a rapid redistribution of protein quality control components and aggregation-prone proteins to diverse subcellular compartments. How these remarkable changes come about is not well understood. Using a phenotypic reporter for a synthetic yeast prion, we identified two protein-sorting factors of the Hook family, termed Btn2 and Cur1, as key regulators of spatial protein quality control in Saccharomyces cerevisiae. Btn2 and Cur1 are undetectable under normal growth conditions but accumulate in stressed cells due to increased gene expression and reduced proteasomal turnover. Newly synthesized Btn2 can associate with the small heat shock protein Hsp42 to promote the sorting of misfolded proteins to a peripheral protein deposition site. Alternatively, Btn2 can bind to the chaperone Sis1 to facilitate the targeting of misfolded proteins to a juxtanuclear compartment. Protein redistribution by Btn2 is accompanied by a gradual depletion of Sis1 from the cytosol, which is mediated by the sorting factor Cur1. On the basis of these findings, we propose a dynamic model that explains the subcellular distribution of misfolded proteins as a function of the cytosolic concentrations of molecular chaperones and protein-sorting factors. Our model suggests that protein aggregation is not a haphazard process but rather an orchestrated cellular response that adjusts the flux of misfolded proteins to the capacities of the protein quality control system.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Chaperonas Moleculares/metabolismo , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/fisiología , Núcleo Celular/metabolismo , Técnicas de Inactivación de Genes , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/fisiología , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Carioferinas/metabolismo , Microscopía Fluorescente , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiología , Señales de Localización Nuclear , Fenotipo , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...