Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 219: 114910, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36493808

RESUMEN

Wastewater treatment systems are essential in today's business to meet the ever-increasing requirements of environmental regulations while also limiting the environmental impact of the sector's discharges. A new control and management information system is needed to handle the residual fluids. This study advises that Wastewater Treatment System (WWTS) operators use intelligent technologies that analyze data and forecast the future behaviour of processes. This method incorporates industrial data into the wastewater treatment model. Deep Convolutional Neural Network (DCNN) and Since Cosine Algorithm (SCA), two powerful artificial neural networks, were used to predict these properties over time. Remediation actions can be taken to ensure procedures are carried out in accordance with the specifications. Water treatment facilities can benefit from this technology because of its sophisticated process that changes feature dynamically and inconsistently. The ultimate goal is to improve the precision with which wastewater treatment models create their predictions. Using DCNN and SCA techniques, the Chemical Oxygen Demand (COD) in wastewater treatment system input and effluent is estimated in this study. Finally, the DCNN-SCA model is applied for the optimization, and it assists in improving the predictive performance. The experimental validation of the DCNN-SCA model is tested and the outcomes are investigated under various prospects. The DCNN-SCA model has achieved a maximum accuracy performance and proving that it outperforms compare with the prevailing techniques over recent approaches. The DCNN-SCA-WWTS model has shown maximum performance Under 600 data, DCNN-SCA-WWTS has a precision of 97.63%, a recall of 96.37%, a F score of 95.31%, an accuracy of 96.27%, an RMSE of 27.55%, and a MAPE of 20.97%.


Asunto(s)
Redes Neurales de la Computación , Purificación del Agua , Algoritmos , Modelos Teóricos
2.
Materials (Basel) ; 15(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35207905

RESUMEN

A better understanding of material deformation behaviours with changes in size is crucial to the design and operation of metal microforming processes. In order to facilitate the investigation of size effects, material deformation behaviours needed to be determined directly from material characterizations. This study was aimed at the design and manufacture of a compact universal testing machine (UTM) compatible with a 3D laser-confocal microscope to observe the deformation behaviour of materials in real-time. In this study, uniaxial micro tensile testing was conducted on three different thin (0.05 mm, 0.1 mm, and 0.3 mm) copper specimens with characteristic dimensions at micro scales. Micro tensile experimental runs were carried out on copper specimens with varying grain sizes on the newly developed apparatus under a 3D laser-confocal microscope. Microscale experiments under 3D laser-confocal microscope provided not only a method to observe the microstructure of materials, but also a novel way to observe the early stages of fracture mechanisms. From real-time examination using the newly developed compact testing apparatus, we discovered that fracture behaviour was mostly brought about by the concave surface formed by free surface roughening. Findings with high stability were discovered while moving with the sample grasped along the drive screw in the graphical plot of a crosshead's displacement against time. Our results also showed very low mechanical noise (detected during the displacement of the crosshead), which indicated that there were no additional effects on the machine, such as vibrations or shifts in speed that could influence performance. The engineering stress-strain plots of the pure copper-tests with various thicknesses or samples depicted a level of stress necessary to initiate plastic flowing inside the material. From these results, we observed that strength and ductility declined with decreasing thickness. The influence of thickness on fracture-strain, observed during tensile testing, made it clear that the elongation-at-break of the pure-copper foils intensely decreased with decreases in thickness. The relative average surface-roughness Ra was evaluated, which showed us that the surface-roughness escalated with the increasing trend of plasticity deformation (plastic strain) ε. For better understanding of the effects of plastic strain on surface roughness prior to material fractures, micro tensile tests were performed on the newly developed machine under a 3D laser-confocal-microscope. We observed that homogeneous surface roughness was caused by plastic strain, which further formed the concave surface that led to the fracture points. Finally, we concluded that surface roughness was one of the crucial factors influencing the fracture behaviour of metallic sheet-strips in metal microforming. We found that this type of testing apparatus could be designed and manufactured within a manageable budget.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA