Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38140084

RESUMEN

Additive manufacturing, widely known as 3D printing, has revolutionized the production of biomaterials. While conventional 3D-printed structures are perceived as static, 4D printing introduces the ability to fabricate materials capable of self-transforming their configuration or function over time in response to external stimuli such as temperature, light, or electric field. This transformative technology has garnered significant attention in the field of biomedical engineering due to its potential to address limitations associated with traditional therapies. Here, we delve into an in-depth review of 4D-printing systems, exploring their diverse biomedical applications and meticulously evaluating their advantages and disadvantages. We emphasize the novelty of this review paper by highlighting the latest advancements and emerging trends in 4D-printing technology, particularly in the context of biomedical applications.

2.
Environ Toxicol Pharmacol ; 104: 104313, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37972914

RESUMEN

When silica nanoparticles (SiNP) reach the water bodies interact with the already existing pollutants in the environments. This study aimed to evaluate the ecotoxicity of SiNP under the presence/absence of Cu in mosquitofish (Gambusia holbrooki). Fish were exposed to 0, 10 and 100 mg SiNP L-1, alone or mixed with Cu (0.25 mg L-1). After 96 h, the amount of colony forming units (CFU) of bacteria living on the skin mucus was analysed, and oxidative stress, tissue damage enzymes, and neurotoxicity were evaluated. We observed a reduction in CFU when Cu was present in the media. The liver was the target organ, evidencing a decrease in tissue damage enzymatic activities, activation of the antioxidant system in all treatments, and lipid oxidative damage when the SiNP and Cu were mixed. Overall, SiNP ecotoxicity was proved, which could also be enhanced by the presence of ubiquitous elements such as metals.


Asunto(s)
Ciprinodontiformes , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Estrés Oxidativo , Antioxidantes , Ciprinodontiformes/fisiología , Contaminantes Químicos del Agua/toxicidad
3.
Environ Toxicol Pharmacol ; 102: 104238, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37524194

RESUMEN

Silica nanoparticles (SiNP) are the most produced nanomaterials due to their variety of applications. When released to environments, surface water bodies are their main final sink. SiNP toxicity is still inconclusive and may vary according to particle properties such as their size. We analyzed the size-related effects of SiNP (22 and 244 nm) on mortality, life history traits, and oxidative stress in the cladoceran Ceriodaphnia reticulata. The smaller SiNP (LC5072 h: 105.5 µg/ml) were more lethal than the larger ones (LC5072 h >500 µg/ml). The 22 nm-sized SiNP decreased the number of molts and neonates, increased superoxide dismutase and inhibited glutathione S-transferase activities, while larger SiNP did not exert substantial effects on the organisms at the tested concentrations. In conclusion, SiNP toxicity depended on their size, and this information should be considered for regulatory purposes and to the development of safe-by-design nanoproducts to ultimately guarantee the environment protection.


Asunto(s)
Cladóceros , Nanopartículas , Animales , Humanos , Recién Nacido , Nanopartículas/toxicidad , Estrés Oxidativo , Superóxido Dismutasa , Dióxido de Silicio/toxicidad
4.
Int J Pharm ; 634: 122662, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36736675

RESUMEN

Growth hormone deficiency has been treated by the daily administration of recombinant human growth hormone (hGH) for decades. Patient compliance to this treatment is generally incomplete due to challenges including dose frequency and lack of perceived benefits. This stimulates the research on new formulations to reduce the number of periodic administrations. In this study silica nanoparticles and silica-collagen nanocomposites were evaluated for hGH loading and release. Bare nanoparticles showed higher hGH adsorption capacity than thiol- and isobutyl-bearing particles of similar diameters. Monitoring of bound protein conformation changes indicated hGH structure retention when adsorbed on bare silica nanoparticles and suggested no alterations on protein activity. Protein-loaded particles incorporated into collagen matrices (silica-collagen nanocomposites) showed a progressive protein release profile different from the observed for hGH-loaded silica nanoparticles and hGH-loaded collagen matrices. While both the collagen and the silica nanoparticle systems reached a 100 % release after 4 and 7 days respectively, silica-collagen nanocomposites showed a bi-phasic prolonged hGH release reaching approximately an 80 % after 15 days. These findings suggest that biocompatible silica-collagen nanocomposites could be used as vehicles for the prolonged delivery of hGH which could lead to a potential reduction in the number of periodic administrations.


Asunto(s)
Hormona de Crecimiento Humana , Humanos , Hormona de Crecimiento Humana/química , Dióxido de Silicio , Colágeno , Composición de Medicamentos , Proteínas Recombinantes , Hormona del Crecimiento
5.
Polymers (Basel) ; 14(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36433079

RESUMEN

Electroactive hydrogels based on derivatives of polyethyleneglycol (PEG), chitosan and polypyrrole were prepared via a combination of photopolymerization and oxidative chemical polymerization, and optionally doped with anions (e.g., lignin, drugs, etc.). The products were analyzed with a variety of techniques, including: FT-IR, UV-Vis, 1H NMR (solution state), 13C NMR (solid state), XRD, TGA, SEM, swelling ratios and rheology. The conductive gels swell ca. 8 times less than the non-conductive gels due to the presence of the interpenetrating network (IPN) of polypyrrole and lignin. A rheological study showed that the non-conductive gels are soft (G' 0.35 kPa, G″ 0.02 kPa) with properties analogous to brain tissue, whereas the conductive gels are significantly stronger (G' 30 kPa, G″ 19 kPa) analogous to breast tissue due to the presence of the IPN of polypyrrole and lignin. The potential of these biomaterials to be used for biomedical applications was validated in vitro by cell culture studies (assessing adhesion and proliferation of fibroblasts) and drug delivery studies (electrochemically loading the FDA-approved chemotherapeutic pemetrexed and measuring passive and stimulated release); indeed, the application of electrical stimulus enhanced the release of PEM from gels by ca. 10-15% relative to the passive release control experiment for each application of electrical stimulation over a short period analogous to the duration of stimulation applied for electrochemotherapy. It is foreseeable that such materials could be integrated in electrochemotherapeutic medical devices, e.g., electrode arrays or plates currently used in the clinic.

6.
Polymers (Basel) ; 14(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36365500

RESUMEN

There is an increasing medical need for the development of new materials that could replace damaged organs, improve healing of critical wounds or provide the environment required for the formation of a new healthy tissue. The three-dimensional (3D) printing approach has emerged to overcome several of the major deficiencies of tissue engineering. The use of Cannabis sativa as a therapy for some diseases has spread throughout the world thanks to its benefits for patients. In this work, we developed a bioink made with gelatin and alginate that was able to be printed using an extrusion 3D bioprinter. The scaffolds obtained were lyophilized, characterized and the swelling was assessed. In addition, the scaffolds were loaded with Cannabis sativa oil extract. The presence of the extract provided antimicrobial and antioxidant activity to the 3D scaffolds. Altogether, our results suggest that the new biocompatible material printed with 3D technology and with the addition of Cannabis sativa oil could become an attractive alternative to common treatments of soft-tissue infections and wound repair.

7.
Biomacromolecules ; 23(7): 3031-3040, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35748772

RESUMEN

Biomaterials capable of precisely controlling the delivery of agrochemicals/biologics/drugs/fragrances have significant markets in the agriscience/healthcare industries. Here, we report the development of degradable electroactive polymers and their application for the controlled delivery of a clinically relevant drug (the anti-inflammatory dexamethasone phosphate, DMP). Electroactive copolymers composed of blocks of polycaprolactone (PCL) and naturally occurring electroactive pyrrole oligomers (e.g., bilirubin, biliverdin, and hemin) were prepared and solution-processed to produce films (optionally doped with DMP). A combination of in silico/in vitro/in vivo studies demonstrated the cytocompatibility of the polymers. The release of DMP in response to the application of an electrical stimulus was observed to be enhanced by ca. 10-30% relative to the passive release from nonstimulated samples in vitro. Such stimuli-responsive biomaterials have the potential for integration devices capable of delivering a variety of molecules for technical/medical applications.


Asunto(s)
Materiales Biocompatibles , Polímeros , Electricidad , Pirroles
8.
Pharmaceutics ; 14(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35214197

RESUMEN

Skin tissue engineering and regeneration aim at repairing defective skin injuries and progress in wound healing. Until now, even though several developments are made in this field, it is still challenging to face the complexity of the tissue with current methods of fabrication. In this review, short, state-of-the-art on developments made in skin tissue engineering using 3D bioprinting as a new tool are described. The current bioprinting methods and a summary of bioink formulations, parameters, and properties are discussed. Finally, a representative number of examples and advances made in the field together with limitations and future needs are provided.

9.
Macromol Biosci ; 22(4): e2100383, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34984818

RESUMEN

Synthetic and natural biomaterials are a promising alternative for the treatment of critical-sized bone defects. Several parameters such as their porosity, surface, and mechanical properties are extensively pointed out as key points to recapitulate the bone microenvironment. Many biomaterials with this pursuit are employed to provide a matrix, which can supply the specific environment and architecture for an adequate bone growth. Nevertheless, some queries remain unanswered. This review discusses the recent advances achieved by some synthetic and natural biomaterials to mimic the native structure of bone and the manufacturing technology applied to obtain biomaterial candidates. The focus of this review is placed in the recent advances in the development of biomaterial-based therapy for bone defects in different types of bone. In this context, this review gives an overview of the potentialities of synthetic and natural biomaterials: polyurethanes, polyesters, hyaluronic acid, collagen, titanium, and silica as successful candidates for the treatment of bone defects.


Asunto(s)
Materiales Biocompatibles , Huesos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Colágeno , Porosidad , Ingeniería de Tejidos , Titanio/química
10.
Antibiotics (Basel) ; 12(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36671217

RESUMEN

UV-irradiation method has grown as an alternative approach to in situ synthetize silver nanoparticles (AgNPs) for avoiding the use of toxic reducing agents. In this work, an antimicrobial material by in situ synthesizing AgNPs within 3D-printed collagen-based scaffolds (Col-Ag) was developed. By modifying the concentration of AgNO3 (0.05 and 0.1 M) and UV irradiation time (2 h, 4 h, and 6 h), the morphology and size of the in situ prepared AgNPs could be controlled. As a result, star-like silver particles of around 23 ± 4 µm and spherical AgNPs of 220 ± 42 nm were obtained for Ag 0.05 M, while for Ag 0.1 M cubic particles from 0.3 to 1.0 µm and round silver precipitates of 3.0 ± 0.4 µm were formed in the surface of the scaffolds at different UV irradiation times. However, inside the material AgNPs of 10-28 nm were obtained. The DSC thermal analysis showed that a higher concentration of Ag stabilizes the 3D-printed collagen-based scaffolds, while a longer UV irradiation interval produces a decrease in the denaturation temperature of collagen. The enzymatic degradation assay also revealed that the in situ formed AgNPs act as stabilizing and reinforcement agent which also improve the swelling capacity of collagen-based material. Finally, antimicrobial activity of Col-Ag was studied, showing high bactericidal efficiency against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. These results showed that the UV irradiation method was really attractive to modulate the size and shape of in situ synthesized AgNPs to develop antimicrobial 3D-printed collagen scaffolds with different thermal, swelling and degradation properties.

11.
Antibiotics (Basel) ; 10(11)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34827358

RESUMEN

Wounds represent a major healthcare problem especially in hospital-associated infections where multi-drug resistant strains are often involved. Nowadays, biomaterials with therapeutic molecules play an active role in wound healing and infection prevention. In this work, the development of collagen hydrogels loaded with silver nanoparticles and Cannabis sativa oil extract is described. The presence of the silver nanoparticles gives interesting feature to the biomaterial such as improved mechanical properties or resistance to collagenase degradation but most important is the long-lasting antimicrobial effect. Cannabis sativa oil, which is known for its anti-inflammatory and analgesic effects, possesses antioxidant activity and successfully improved the biocompatibility and also enhances the antimicrobial activity of the nanocomposite. Altogether, these results suggest that this novel nanocomposite biomaterial is a promising alternative to common treatments of wound infections and wound healing.

12.
Int J Mol Sci ; 21(13)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630690

RESUMEN

Smart or stimuli-responsive materials are an emerging class of materials used for tissue engineering and drug delivery. A variety of stimuli (including temperature, pH, redox-state, light, and magnet fields) are being investigated for their potential to change a material's properties, interactions, structure, and/or dimensions. The specificity of stimuli response, and ability to respond to endogenous cues inherently present in living systems provide possibilities to develop novel tissue engineering and drug delivery strategies (for example materials composed of stimuli responsive polymers that self-assemble or undergo phase transitions or morphology transformations). Herein, smart materials as controlled drug release vehicles for tissue engineering are described, highlighting their potential for the delivery of precise quantities of drugs at specific locations and times promoting the controlled repair or remodeling of tissues.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Polímeros de Estímulo Receptivo/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Transición de Fase , Polímeros/química , Polímeros de Estímulo Receptivo/metabolismo , Temperatura
13.
Colloids Surf B Biointerfaces ; 193: 111128, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32450505

RESUMEN

Nanoparticles (NPs) are being studied due to their potential use as therapeutic and immunomodulatory tools, including their ability to transport antigens with the aim to induce a specific immune response. The production of snake antivenoms (AV) involves several inoculations of venom (V) in the presence of adjuvants (ADJ) to improve the immune response of inoculated animals, causing a decrease in its quality and shelf life. Therefore, it is interesting to develop new strategies for reduce these side effects. For that reason, associating V to NPs to replace conventional ADJ could be a useful tool for future AV production. In this work, nanovenoms (NVs) were generated by the adsorption of Crotalus durissus terrificus (Cdt) V proteins over silica NPs (SiNPs) synthesized according to the Stöber method. Microphotographies obtained under Transmission Electron Microscopy (TEM) displayed a protein crown over NPs and Fourier Transform Infrared (FT-IR) presented the expected spectra for NVs resulting from the sum of those exhibited by Cdt V and SiNPs separately. SDS PAGE and immunoblotting assays confirmed the presence of proteins over SiNPs. Furthermore, the different enzymatic activities detected demonstrated that SiNPs were capable of binding V proteins preserving its activity and therefore would keep its native structure. In the same way, the NVs conserve the potential cytotoxic effects present in the V as we observed when culturing THP-1 cells with these complexes. This evidence allows us to infer that developed NVs could be used as a new platform for the production of antisera or for immunomodulatory therapies.


Asunto(s)
Venenos de Crotálidos/química , Nanopartículas/química , Dióxido de Silicio/química , Animales , Células Cultivadas , Crotalus , Humanos , Tamaño de la Partícula , Propiedades de Superficie , Células THP-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...