Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Food Res Int ; 179: 114027, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342547

RESUMEN

Oenococcus oeni is the lactic acid bacteria most suited to carry out malolactic fermentation in wine, converting L-malic acid into L-lactic acid and carbon dioxide, thereby deacidifying wines. Indeed, wine is a harsh environment for microbial growth, partly because of its low pH. By metabolizing citrate, O. oeni maintains its homeostasis under acid conditions. Indeed, citrate consumption activates the proton motive force, helps to maintain intracellular pH, and enhances bacterial growth when it is co-metabolized with sugars. In addition, citrate metabolism is responsible for diacetyl production, an aromatic compound which bestows a buttery character to wine. However, an inhibitory effect of citrate on O. oeni growth at low pH has been highlighted in recent years. In order to understand how citrate metabolism can be linked to the acid tolerance of this bacterium, consumption of citrate was investigated in eleven O. oeni strains. In addition, malate and sugar consumptions were also monitored, as they can be impacted by citrate metabolism. This experiment highlighted the huge diversity of metabolisms between strains depending on their origin. It also showed the capacity of O. oeni to de novo metabolize certain end-products such as L-lactate and mannitol, a phenomenon never before demonstrated. It also enabled drawing hypotheses concerning the two positive effects that the slowing down of citrate metabolism could have on biomass production and malolactic fermentation occurring under low pH conditions.


Asunto(s)
Ácido Cítrico , Malatos , Oenococcus , Vino , Fermentación , Vino/análisis , Azúcares , Concentración de Iones de Hidrógeno
2.
Int. microbiol ; 26(3): 501-511, Ene-Agos, 2023. ilus, graf, tab
Artículo en Inglés | IBECS | ID: ibc-223977

RESUMEN

Climate change and environmental issues compel us to find alternatives to the production of molecules of interest from petrochemistry. This study aims at understanding the production of butyrate, hydrogen, and CO2 from the oxidation of lactate with acetate in Clostridium tyrobutyricum and thus proposes an alternative carbon source to glucose. This specie is known to produce more butyrate than the other butyrate-producing clostridia species due to a lack of solvent genesis phase. The recent discoveries on flavin-based electron bifurcation and confurcation mechanism as a mode of energy conservation led us to suggest a new metabolic scheme for the formation of butyrate from lactate-acetate co-metabolism. While searching for genes encoding for EtfAB complexes and neighboring genes in the genome of C. tyrobutyricum, we identified a cluster of genes involved in butyrate formation and another cluster involved in lactate oxidation homologous to Acetobacterium woodii. A phylogenetic approach encompassing other butyrate-producing and/or lactate-oxidizing species based on EtfAB complexes confirmed these results. A metabolic scheme on the production of butyrate, hydrogen, and CO2 from the lactate-acetate co-metabolism in C. tyrobutyricum was constructed and then confirmed with data of steady-state continuous culture. This in silico metabolic carbon flux analysis model showed the coherence of the scheme from the carbon recovery, the cofactor ratio, and the ATP yield. This study improves our understanding of the lactate oxidation metabolic pathways and the role of acetate and intracellular redox balance, and paves the way for the production of molecules of interest as butyrate and hydrogen with C. tyrobutyricum.(AU)


Asunto(s)
Humanos , Biología Computacional/métodos , Clostridium tyrobutyricum , Oxidación , Ácido Láctico , Microbiología , Técnicas Microbiológicas
3.
Int Microbiol ; 26(3): 501-511, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36609955

RESUMEN

Climate change and environmental issues compel us to find alternatives to the production of molecules of interest from petrochemistry. This study aims at understanding the production of butyrate, hydrogen, and CO2 from the oxidation of lactate with acetate in Clostridium tyrobutyricum and thus proposes an alternative carbon source to glucose. This specie is known to produce more butyrate than the other butyrate-producing clostridia species due to a lack of solvent genesis phase. The recent discoveries on flavin-based electron bifurcation and confurcation mechanism as a mode of energy conservation led us to suggest a new metabolic scheme for the formation of butyrate from lactate-acetate co-metabolism. While searching for genes encoding for EtfAB complexes and neighboring genes in the genome of C. tyrobutyricum, we identified a cluster of genes involved in butyrate formation and another cluster involved in lactate oxidation homologous to Acetobacterium woodii. A phylogenetic approach encompassing other butyrate-producing and/or lactate-oxidizing species based on EtfAB complexes confirmed these results. A metabolic scheme on the production of butyrate, hydrogen, and CO2 from the lactate-acetate co-metabolism in C. tyrobutyricum was constructed and then confirmed with data of steady-state continuous culture. This in silico metabolic carbon flux analysis model showed the coherence of the scheme from the carbon recovery, the cofactor ratio, and the ATP yield. This study improves our understanding of the lactate oxidation metabolic pathways and the role of acetate and intracellular redox balance, and paves the way for the production of molecules of interest as butyrate and hydrogen with C. tyrobutyricum.


Asunto(s)
Clostridium tyrobutyricum , Fermentación , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Análisis de Flujos Metabólicos , Dióxido de Carbono/metabolismo , Filogenia , Butiratos/metabolismo , Acetatos/metabolismo , Lactatos/metabolismo , Hidrógeno/metabolismo , Biología Computacional , Carbono/metabolismo
4.
Food Res Int ; 156: 111154, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35651020

RESUMEN

Lactic acid bacteria (LAB) are important microorganisms in the food industry as functional starters for the manufacture of fermented food products and as probiotics. Redox potential (Eh) is a parameter of the physicochemical environment of foods that influences key oxidation-reduction reactions involved in process performances and product quality. Eh can be modified by different methods, using redox molecules, catalytic activity of enzymes or LAB themselves, technological treatments like electroreduction or heating, and finally gases. Nowadays new applications for food manufacture must undertake green process innovation. This paper presents the strategies for Eh modification in a sustainable manner for production of LAB biomass (starters, probiotics) and fermented food products (fermented milks, cheeses and others). While the use of chemical or enzymes may be subject to controversy, the use of gases offers new opportunities, in combination with LAB. Protection against food-borne microorganisms, an increasing growth and viability of LAB, and a positive impact on food flavour are expected.


Asunto(s)
Alimentos Fermentados , Lactobacillales , Probióticos , Industria de Alimentos , Gases , Probióticos/química
5.
Microbiol Resour Announc ; 8(30)2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31346011

RESUMEN

Clostridium tyrobutyricum is the main bacterial species leading to the late blowing defect, a major cause of spoilage in semihard and hard cheeses. This study reports the complete genome sequencing, assembly, and annotation of C. tyrobutyricum strain Cirm BIA 2237, formerly called CNRZ 608, isolated from silage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...