Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20064980

RESUMEN

The COVID-19 pandemic is straining public health systems worldwide and major non-pharmaceutical interventions have been implemented to slow its spread1-4. During the initial phase of the outbreak the spread was primarily determined by human mobility5,6. Yet empirical evidence on the effect of key geographic factors on local epidemic spread is lacking7. We analyse highly-resolved spatial variables for cities in China together with case count data in order to investigate the role of climate, urbanization, and variation in interventions across China. Here we show that the epidemic intensity of COVID-19 is strongly shaped by crowding, such that epidemics in dense cities are more spread out through time, and denser cities have larger total incidence. Observed differences in epidemic intensity are well captured by a metapopulation model of COVID-19 that explicitly accounts for spatial hierarchies. Densely-populated cities worldwide may experience more prolonged epidemics. Whilst stringent interventions can shorten the time length of these local epidemics, although these may be difficult to implement in many affected settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...