Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Evol Biol ; 33(11): 1579-1592, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32871625

RESUMEN

Females from the same population usually have phenotypic variation in their mating preferences. However, the effects of this within-population variation on the sexual selection acting on males are still unclear. We used individual-based models to explore how within-population variation in female preference (i.e. which male trait value is preferred) and preference strength (i.e. how strong the preference is) affects the opportunity for sexual selection (Is ) and the evolution of a sexually selected male trait. We found the highest Is values when females had high variation in preference and an open-ended preference function. The lowest Is occurred when the magnitude of variation in female preference and male trait value were the same and preference function was closed. Male trait exaggeration was higher when there was high within-population variation in preference and females had an open-ended preference function. Also, higher male trait variation was maintained by high variation in preference, but only for a closed preference function. Thus, we found that only within-population variation in female preference, not in preference strength, influences the opportunity for sexual selection and the evolution of sexually selected male traits. Moreover, we found that the shape of the preference function (i.e. open-ended or closed) and the magnitude of within-population variation in female preference compared to male trait variation also influences the Is and consequently the evolution of male traits.


Asunto(s)
Evolución Biológica , Preferencia en el Apareamiento Animal , Modelos Genéticos , Selección Sexual , Animales , Femenino , Masculino
2.
J Morphol ; 281(9): 1098-1109, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32681767

RESUMEN

Sexual selection influences the evolution of morphological traits that increase the likelihood of monopolizing scarce resources. When such traits are used during contests, they are termed weapons. Given that resources are typically linked to monopolizing mating partners, theory expects only males to bear weapons. In some species, however, females also bear weapons, although typically smaller than male weapons. Understanding why females bear smaller weapons can thus help us understand the selective pressures behind weapon evolution. However, most of our knowledge comes from studies on weapon size, while the biomechanics of weapons, such as the size of the muscles, efficiency, and shape are seldom studied. Our goal was to test if the theoretical expectations for weapon size sexual dimorphism also occur for weapon biomechanics using two aeglid crab species. Males of both species had larger claws which were also stronger than female claws. Male claws were also more efficient than females' claws (although we used only one species in this analysis). For weapon shape, though, only one species differed in the mean claw shape. Regarding scaling differences, in both species, male claws had higher size scaling than females, while only one species had a higher shape scaling. However, male weapons did not have higher scaling regarding strength and efficiency than females. Thus, males apparently allocate more resources in weapons than females, but once allocated, muscle and efficiency follow a similar developmental pathway in both sexes. Taken together, our results show that sexual dimorphism in weapons involves more than differences in size. Shape differences are especially intriguing because we cannot fully understand its causes. Yet, we highlight that such subtle differences can only be detected by measuring and analysing weapon shape and biomechanical components. Only then we might better understand how weapons are forged.


Asunto(s)
Braquiuros/anatomía & histología , Braquiuros/fisiología , Agua Dulce , Caracteres Sexuales , Animales , Fenómenos Biomecánicos , Femenino , Masculino , Fenotipo , Análisis de Componente Principal , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA