Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38352527

RESUMEN

Even under spontaneous conditions and in the absence of changing environmental demands, awake animals alternate between increased or decreased periods of alertness. These changes in brain state can occur rapidly, on a timescale of seconds, and neuromodulators such as acetylcholine (ACh) are thought to play an important role in driving these spontaneous state transitions. Here, we perform the first simultaneous imaging of ACh sensors and GCaMP-expressing axons in vivo, to examine the spatiotemporal properties of cortical ACh activity and release during spontaneous changes in behavioral state. We observed a high correlation between simultaneously recorded basal forebrain axon activity and neuromodulator sensor fluorescence around periods of locomotion and pupil dilation. Consistent with volume transmission of ACh, increases in axon activity were accompanied by increases in local ACh levels that fell off with the distance from the nearest axon. GRAB-ACh fluorescence could be accurately predicted from axonal activity alone, providing the first validation that neuromodulator axon activity is a reliable proxy for nearby neuromodulator levels. Deconvolution of fluorescence traces allowed us to account for the kinetics of the GRAB-ACh sensor and emphasized the rapid clearance of ACh for smaller transients outside of running periods. Finally, we trained a predictive model of ACh fluctuations from the combination of pupil size and running speed; this model performed better than using either variable alone, and generalized well to unseen data. Overall, these results contribute to a growing understanding of the precise timing and spatial characteristics of cortical ACh during fast brain state transitions.

2.
Proc Natl Acad Sci U S A ; 120(46): e2308670120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37939085

RESUMEN

Understanding the neurobiological mechanisms underlying consciousness remains a significant challenge. Recent evidence suggests that the coupling between distal-apical and basal-somatic dendrites in thick-tufted layer 5 pyramidal neurons (L5PN), regulated by the nonspecific-projecting thalamus, is crucial for consciousness. Yet, it is uncertain whether this thalamocortical mechanism can support emergent signatures of consciousness, such as integrated information. To address this question, we constructed a biophysical network of dual-compartment thick-tufted L5PN, with dendrosomatic coupling controlled by thalamic inputs. Our findings demonstrate that integrated information is maximized when nonspecific thalamic inputs drive the system into a regime of time-varying synchronous bursting. Here, the system exhibits variable spiking dynamics with broad pairwise correlations, supporting the enhanced integrated information. Further, the observed peak in integrated information aligns with criticality signatures and empirically observed layer 5 pyramidal bursting rates. These results suggest that the thalamocortical core of the mammalian brain may be evolutionarily configured to optimize effective information processing, providing a potential neuronal mechanism that integrates microscale theories with macroscale signatures of consciousness.


Asunto(s)
Neuronas , Células Piramidales , Animales , Neuronas/fisiología , Células Piramidales/fisiología , Dendritas/fisiología , Tálamo/fisiología , Mamíferos
3.
Nat Commun ; 14(1): 6846, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891167

RESUMEN

The human brain displays a rich repertoire of states that emerge from the microscopic interactions of cortical and subcortical neurons. Difficulties inherent within large-scale simultaneous neuronal recording limit our ability to link biophysical processes at the microscale to emergent macroscopic brain states. Here we introduce a microscale biophysical network model of layer-5 pyramidal neurons that display graded coarse-sampled dynamics matching those observed in macroscale electrophysiological recordings from macaques and humans. We invert our model to identify the neuronal spike and burst dynamics that differentiate unconscious, dreaming, and awake arousal states and provide insights into their functional signatures. We further show that neuromodulatory arousal can mediate different modes of neuronal dynamics around a low-dimensional energy landscape, which in turn changes the response of the model to external stimuli. Our results highlight the promise of multiscale modelling to bridge theories of consciousness across spatiotemporal scales.


Asunto(s)
Encéfalo , Neuronas , Animales , Humanos , Encéfalo/fisiología , Neuronas/fisiología , Estado de Conciencia/fisiología , Células Piramidales , Nivel de Alerta , Macaca
4.
Cell Rep ; 42(8): 112844, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37498741

RESUMEN

The neurobiological mechanisms of arousal and anesthesia remain poorly understood. Recent evidence highlights the key role of interactions between the cerebral cortex and the diffusely projecting matrix thalamic nuclei. Here, we interrogate these processes in a whole-brain corticothalamic neural mass model endowed with targeted and diffusely projecting thalamocortical nuclei inferred from empirical data. This model captures key features seen in propofol anesthesia, including diminished network integration, lowered state diversity, impaired susceptibility to perturbation, and decreased corticocortical coherence. Collectively, these signatures reflect a suppression of information transfer across the cerebral cortex. We recover these signatures of conscious arousal by selectively stimulating the matrix thalamus, recapitulating empirical results in macaque, as well as wake-like information processing states that reflect the thalamic modulation of large-scale cortical attractor dynamics. Our results highlight the role of matrix thalamocortical projections in shaping many features of complex cortical dynamics to facilitate the unique communication states supporting conscious awareness.


Asunto(s)
Corteza Cerebral , Propofol , Tálamo , Estado de Conciencia , Núcleos Talámicos , Propofol/farmacología , Vías Nerviosas
5.
Front Hum Neurosci ; 16: 1062487, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504620

RESUMEN

Neuroscience has had access to high-resolution recordings of large-scale cortical activity and structure for decades, but still lacks a generally adopted basis to analyze and interrelate results from different individuals and experiments. Here it is argued that the natural oscillatory modes of the cortex-cortical eigenmodes-provide a physically preferred framework for systematic comparisons across experimental conditions and imaging modalities. In this framework, eigenmodes are analogous to notes of a musical instrument, while commonly used statistical patterns parallel frequently played chords. This intuitive perspective avoids problems that often arise in neuroimaging analyses, and connects to underlying mechanisms of brain activity. We envisage this approach will lead to novel insights into whole-brain function, both in existing and prospective datasets, and facilitate a unification of empirical findings across presently disparate analysis paradigms and measurement modalities.

6.
Netw Neurosci ; 6(4): 960-979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36875012

RESUMEN

Most human neuroscience research to date has focused on statistical approaches that describe stationary patterns of localized neural activity or blood flow. While these patterns are often interpreted in light of dynamic, information-processing concepts, the static, local, and inferential nature of the statistical approach makes it challenging to directly link neuroimaging results to plausible underlying neural mechanisms. Here, we argue that dynamical systems theory provides the crucial mechanistic framework for characterizing both the brain's time-varying quality and its partial stability in the face of perturbations, and hence, that this perspective can have a profound impact on the interpretation of human neuroimaging results and their relationship with behavior. After briefly reviewing some key terminology, we identify three key ways in which neuroimaging analyses can embrace a dynamical systems perspective: by shifting from a local to a more global perspective, by focusing on dynamics instead of static snapshots of neural activity, and by embracing modeling approaches that map neural dynamics using "forward" models. Through this approach, we envisage ample opportunities for neuroimaging researchers to enrich their understanding of the dynamic neural mechanisms that support a wide array of brain functions, both in health and in the setting of psychopathology.

7.
Nat Commun ; 12(1): 6016, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650039

RESUMEN

Models of cognitive function typically focus on the cerebral cortex and hence overlook functional links to subcortical structures. This view does not consider the role of the highly-conserved ascending arousal system's role and the computational capacities it provides the brain. We test the hypothesis that the ascending arousal system modulates cortical neural gain to alter the low-dimensional energy landscape of cortical dynamics. Here we use spontaneous functional magnetic resonance imaging data to study phasic bursts in both locus coeruleus and basal forebrain, demonstrating precise time-locked relationships between brainstem activity, low-dimensional energy landscapes, network topology, and spatiotemporal travelling waves. We extend our analysis to a cohort of experienced meditators and demonstrate locus coeruleus-mediated network dynamics were associated with internal shifts in conscious awareness. Together, these results present a view of brain organization that highlights the ascending arousal system's role in shaping both the dynamics of the cerebral cortex and conscious awareness.


Asunto(s)
Nivel de Alerta , Encéfalo/fisiología , Cognición , Vías Nerviosas , Adolescente , Adulto , Anciano , Atención , Prosencéfalo Basal , Tronco Encefálico , Femenino , Humanos , Locus Coeruleus , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Nat Commun ; 11(1): 6337, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303766

RESUMEN

The biological mechanisms that allow the brain to balance flexibility and integration remain poorly understood. A potential solution may lie in a unique aspect of neurobiology, which is that numerous brain systems contain diffuse synaptic connectivity. Here, we demonstrate that increasing diffuse cortical coupling within a validated biophysical corticothalamic model traverses the system through a quasi-critical regime in which spatial heterogeneities in input noise support transient critical dynamics in distributed subregions. The presence of quasi-critical states coincides with known signatures of complex, adaptive brain network dynamics. Finally, we demonstrate the presence of similar dynamic signatures in empirical whole-brain human neuroimaging data. Together, our results establish that modulating the balance between local and diffuse synaptic coupling in a thalamocortical model subtends the emergence of quasi-critical brain states that act to flexibly transition the brain between unique modes of information processing.


Asunto(s)
Encéfalo/fisiología , Modelos Neurológicos , Humanos , Imagen por Resonancia Magnética , Descanso/fisiología , Análisis y Desempeño de Tareas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...