Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zoonoses Public Health ; 65(1): e113-e123, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29143489

RESUMEN

Brown rats (Rattus norvegicus) are a globally distributed pest. Urban habitats can support large infestations of rats, posing a potential risk to public health from the parasites and pathogens they carry. Despite the potential influence of rodent-borne zoonotic diseases on human health, it is unclear how urban habitats affect the structure and transmission dynamics of ectoparasite and microbial communities (all referred to as "parasites" hereafter) among rat colonies. In this study, we use ecological data on parasites and genomic sequencing of their rat hosts to examine associations between spatial proximity, genetic relatedness and the parasite communities associated with 133 rats at five sites in sections of New York City with persistent rat infestations. We build on previous work showing that rats in New York carry a wide variety of parasites and report that these communities differ significantly among sites, even across small geographical distances. Ectoparasite community similarity was positively associated with geographical proximity; however, there was no general association between distance and microbial communities of rats. Sites with greater overall parasite diversity also had rats with greater infection levels and parasite species richness. Parasite community similarity among sites was not linked to genetic relatedness of rats, suggesting that these communities are not associated with genetic similarity among host individuals or host dispersal among sites. Discriminant analysis identified site-specific associations of several parasite species, suggesting that the presence of some species within parasite communities may allow researchers to determine the sites of origin for newly sampled rats. The results of our study help clarify the roles that colony structure and geographical proximity play in determining the ecology of R. norvegicus as a significant urban reservoir of zoonotic diseases. Our study also highlights the spatial variation present in urban rat parasite communities, indicating that rats across New York City are not reservoirs for a homogenous set of parasites and pathogens. As a result, the epidemiological risks may be similarly heterogeneous for people in urban habitats.


Asunto(s)
Parásitos/genética , Parásitos/aislamiento & purificación , Enfermedades Parasitarias en Animales/parasitología , Enfermedades de los Roedores/parasitología , Animales , Variación Genética , Genómica , Ciudad de Nueva York/epidemiología , Enfermedades Parasitarias en Animales/epidemiología , Ratas , Enfermedades de los Roedores/epidemiología
2.
Heredity (Edinb) ; 119(6): 447-458, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28902189

RESUMEN

Range expansion has genetic consequences expected to result in differentiated wave-front populations with low genetic variation and potentially introgression from a local species. The northern expansion of Peromyscus leucopus in southern Quebec provides an opportunity to test these predictions using population genomic tools. Our results show evidence of recent and post-glacial expansion. Genome-wide variation in P. leucopus indicates two post-glacial lineages are separated by the St. Lawrence River, with a more recent divergence of populations isolated by the Richelieu River. In two of three transects we documented northern populations with low diversity in at least one genetic measure, although most relationships were not significant. Consistent with bottlenecks and allele surfing during northward expansion, we document a northern-most population with low nucleotide diversity, divergent allele frequencies and the most private alleles, and observed heterozygosity indicates outcrossing. Ancestry proportions revealed putative hybrids of P. leucopus and P. maniculatus. A formal test for gene flow confirmed secondary contact, showing that a reticulate population phylogeny between P. maniculatus and P. leucopus was a better fit to the data than a bifurcating model without gene flow. Thus, we provide the first genomic evidence of gene flow between this pair of species in natural populations. Understanding the evolutionary consequences of secondary contact is an important conservation concern as climate-induced range expansions are expected to result in new hybrid zones between closely related species.


Asunto(s)
Genética de Población , Hibridación Genética , Metagenómica , Peromyscus/genética , Alelos , Animales , Flujo Génico , Frecuencia de los Genes , Flujo Genético , Variación Genética , Genotipo , Modelos Genéticos , Peromyscus/clasificación , Quebec , Simpatría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA