Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 106(2-2): 025306, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36109888

RESUMEN

We perform a quantitative analysis of Monte Carlo simulation results of phase separation in ternary blends upon evaporation of one component. Specifically, we calculate the average domain size and plot it as a function of simulation time to compute the exponent of the obtained power law. We compare and discuss results obtained by two different methods, for three different models: two-dimensional (2D) binary-state model (Ising model), 2D ternary-state model with and without evaporation. For the ternary-state models, we study additionally the dependence of the domain growth on concentration, temperature and initial composition. We reproduce the expected 1/3 exponent for the Ising model, while for the ternary-state model without evaporation and for the one with evaporation we obtain lower values of the exponent. It turns out that phase separation patterns that can form in this type of systems are complex. The obtained quantitative results give valuable insights towards devising computable theoretical estimations of size effects on morphologies as they occur in the context of organic solar cells.

2.
Langmuir ; 27(14): 8678-86, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21699178

RESUMEN

For the first time, atomistically detailed molecular dynamics calculations revealed molecular ordering of the water-oxidized atactic polystyrene (aPS) interface. Both ordering of the water molecules and the phenyl rings occur. In addition, the natural roughness of the surface has been simulated and compared to experimental values. The composition of the simulated aPS films is based on spin-coated aPS films that have been oxidized and characterized experimentally. The aPS surfaces are oxidized with ultraviolet-ozone radiation and have been characterized by XPS, AFM, and water contact angle measurements. XPS measurements show that the oxygen content in the sample increases rapidly with exposure and reaches saturation near 24 at. % of oxygen. The molecular dynamics simulations show smoothening of an hydrophobic aPS surface upon transition from vacuum to water. The smoothening decreases with increasing hydrophilicity. The calculations reveal ordering of oxidized phenyl rings for aPS surfaces in water. The order increases with increasing hydrophilicity. Additionally, we investigated the water structure near the aPS-water interface as a function of the surface hydrophilicity. With increasing hydrophilicity, the density of water at the aPS-water interface increases. The water density profile is steeper in the presence of hydrophobic aPS. The water shows an ordered layer near both the hydrophobic and hydrophilic surfaces; the position of this layer shifts toward the interface with increasing hydrophilicity.


Asunto(s)
Poliestirenos/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Molecular , Simulación de Dinámica Molecular , Oxidación-Reducción , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...