Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Open Forum Infect Dis ; 11(Suppl 1): S65-S75, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38532957

RESUMEN

Background: The measurement of fecal inflammatory biomarkers among individuals presenting to care with diarrhea could improve the identification of bacterial diarrheal episodes that would benefit from antibiotic therapy. We reviewed prior literature in this area and describe our proposed methods to evaluate 4 biomarkers in the Enterics for Global Health (EFGH) Shigella surveillance study. Methods: We systematically reviewed studies since 1970 from PubMed and Embase that assessed the diagnostic characteristics of inflammatory biomarkers to identify bacterial diarrhea episodes. We extracted sensitivity and specificity and summarized the evidence by biomarker and diarrhea etiology. In EFGH, we propose using commercial enzyme-linked immunosorbent assays to test for myeloperoxidase, calprotectin, lipocalin-2, and hemoglobin in stored whole stool samples collected within 24 hours of enrollment from participants in the Bangladesh, Kenya, Malawi, Pakistan, Peru, and The Gambia sites. We will develop clinical prediction scores that incorporate the inflammatory biomarkers and evaluate their ability to identify Shigella and other bacterial etiologies of diarrhea as determined by quantitative polymerase chain reaction (qPCR). Results: Forty-nine studies that assessed fecal leukocytes (n = 39), red blood cells (n = 26), lactoferrin (n = 13), calprotectin (n = 8), and myeloperoxidase (n = 1) were included in the systematic review. Sensitivities were high for identifying Shigella, moderate for identifying any bacteria, and comparable across biomarkers. Specificities varied depending on the outcomes assessed. Prior studies were generally small, identified red and white blood cells by microscopy, and used insensitive gold standard diagnostics, such as conventional bacteriological culture for pathogen detection. Conclusions: Our evaluation of inflammatory biomarkers to distinguish diarrhea etiologies as determined by qPCR will provide an important addition to the prior literature, which was likely biased by the limited sensitivity of the gold standard diagnostics used. We will determine whether point-of-care biomarker tests could be a viable strategy to inform treatment decision making and increase appropriate targeting of antibiotic treatment to bacterial diarrhea episodes.

2.
Open Forum Infect Dis ; 11(Suppl 1): S101-S106, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38532955

RESUMEN

Background: Malawi is among 7 countries participating in the Enterics for Global Health (EFGH) Shigella surveillance study, which aims to determine the incidence of medically attended diarrhea attributed to Shigella, a leading bacterial cause of diarrhea in children in low-resource settings. Methods: We describe the EFGH study site in the densely populated informal settlement of Ndirande Township, Blantyre, Malawi. We explore the site's geographical location, demographic characteristics, and the healthcare-seeking behavior of its population, particularly for childhood diarrhea. We also describe the management of childhood diarrhea at the health facility, and the associated challenges to attaining optimum adherence to local and national guidelines at the site. Conclusions: Our overarching aim is to improve global health through understanding and mitigating the impact of diarrhea attributed to Shigella.

3.
Angew Chem Int Ed Engl ; 60(19): 10547-10551, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33621416

RESUMEN

The 90 kDa heat shock protein (Hsp90) is a molecular chaperone that processes nascent polypeptides into their biologically active conformations. Many of these proteins contribute to the progression of cancer, and consequently, inhibition of the Hsp90 protein folding machinery represents an innovative approach toward cancer chemotherapy. However, clinical trials with Hsp90 N-terminal inhibitors have encountered deleterious side effects and toxicities, which appear to result from the pan-inhibition of all four Hsp90 isoforms. Therefore, the development of isoform-selective Hsp90 inhibitors is sought to delineate the pathological role played by each isoform. Herein, we describe a structure-based approach that was used to design the first Hsp90α-selective inhibitors, which exhibit >50-fold selectivity versus other Hsp90 isoforms.


Asunto(s)
Antineoplásicos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Neoplasias/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo
4.
J Med Chem ; 64(3): 1545-1557, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33428418

RESUMEN

The 90 kD heat shock proteins (Hsp90) are molecular chaperones that are responsible for the folding of select proteins, many of which are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials for the treatment of cancer, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms, which may lead to adverse effects. The development of Hsp90 isoform-selective inhibitors represents an alternative approach toward the treatment of cancer and may limit some of these detriments. Described herein, is a structure-based approach to develop isoform-selective inhibitors of Hsp90ß, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90ß-selective inhibitors as a method for overcoming the detriments associated with pan-inhibition.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Silenciador del Gen , Proteínas HSP90 de Choque Térmico/genética , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Modelos Moleculares , Conformación Molecular , Neoplasias/tratamiento farmacológico , Pliegue de Proteína , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Especificidad por Sustrato , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
5.
ACS Med Chem Lett ; 11(8): 1535-1538, 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32832020

RESUMEN

Heat shock protein 90 (Hsp90) is a molecular chaperone that is responsible for the folding and maturation of client proteins that are associated with all ten hallmarks of cancer. Hsp90 N-terminal pan inhibitors have experienced unfavorable results in clinical trials due to induction of the heat shock response (HSR), among other concerns. Novobiocin, a well characterized DNA gyrase B inhibitor, was identified as the first Hsp90 C-terminal inhibitor that manifested anticancer effects without induction of the HSR. In this letter, a library of Hsp90 C-terminal inhibitors derived from a benzothiazole-based scaffold, known to inhibit DNA gyrase B, was designed, synthesized, and evaluated. Several compounds were found to manifest low micromolar activity against both MCF-7 and SKBr3 breast cancer cell lines via Hsp90 C-terminal inhibition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...