Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 18(1): 234-250, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-34978441

RESUMEN

We recently introduced [J. Chem. Phys. 2020, 152, 204103] the nuclear-electronic all-particle density matrix renormalization group (NEAP-DMRG) method to solve the molecular Schrödinger equation, based on a stochastically optimized orbital basis, without invoking the Born-Oppenheimer approximation. In this work, we combine the DMRG method with the nuclear-electronic Hartree-Fock (NEHF-DMRG) approach, treating nuclei and electrons on the same footing. Inter- and intraspecies correlations are described within the DMRG method without truncating the excitation degree of the full configuration interaction wave function. We extend the concept of orbital entanglement and mutual information to nuclear-electronic wave functions and demonstrate that they are reliable metrics to detect strong correlation effects. We apply the NEHF-DMRG method to the HeHHe+ molecular ion, to obtain accurate proton densities, ground-state total energies, and vibrational transition frequencies by comparison with state-of-the-art data obtained with grid-based approaches and modern configuration interaction methods. For HCN, we improve on the accuracy of the latter approaches with respect to both the ground-state absolute energy and proton density, which is a major challenge for multireference nuclear-electronic state-of-the-art methods.

2.
J Chem Phys ; 152(20): 204103, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486651

RESUMEN

We introduce the Nuclear-Electronic All-Particle Density Matrix Renormalization Group (NEAP-DMRG) method for solving the time-independent Schrödinger equation simultaneously for electrons and other quantum species. In contrast to the already existing multicomponent approaches, in this work, we construct from the outset a multi-reference trial wave function with stochastically optimized non-orthogonal Gaussian orbitals. By iterative refining of the Gaussians' positions and widths, we obtain a compact multi-reference expansion for the multicomponent wave function. We extend the DMRG algorithm to multicomponent wave functions to take into account inter- and intra-species correlation effects. The efficient parameterization of the total wave function as a matrix product state allows NEAP-DMRG to accurately approximate the full configuration interaction energies of molecular systems with more than three nuclei and 12 particles in total, which is currently a major challenge for other multicomponent approaches. We present the NEAP-DMRG results for two few-body systems, i.e., H2 and H3 +, and one larger system, namely, BH3.

3.
J Chem Phys ; 151(15): 154110, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640358

RESUMEN

Various explicitly correlated Gaussian (ECG) basis sets are considered for the solution of the molecular Schrödinger equation with particular attention to the simplest polyatomic system, H3 +. Shortcomings and advantages are discussed for plain ECGs, ECGs with the global vector representation, floating ECGs and their numerical projection, and ECGs with complex parameters. The discussion is accompanied with particle density plots to visualize the observations. In order to be able to use large complex ECG basis sets in molecular calculations, a numerically stable algorithm is developed, the efficiency of which is demonstrated for the lowest rotationally and vibrationally excited states of H2 and H3 +.

5.
J Chem Phys ; 149(18): 184105, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30441913

RESUMEN

Numerical projection methods are elaborated for the calculation of eigenstates of the non-relativistic many-particle Coulomb Hamiltonian with selected rotational and parity quantum numbers employing shifted explicitly correlated Gaussian functions, which are, in general, not eigenfunctions of the total angular momentum and parity operators. The increased computational cost of numerically projecting the basis functions onto the irreducible representations of the three dimensional rotation-inversion group is the price to pay for the increased flexibility of the basis functions. This increased flexibility allowed us to achieve a substantial improvement for the variational upper bound to the Pauli-allowed ground-state energy of the H 3 + = { p + , p + , p + , e - , e - } molecular ion treated as an explicit five-particle system. We compare our pre-Born-Oppenheimer result obtained for this molecular ion with rotational-vibrational calculations carried out on a potential energy surface.

6.
J Chem Phys ; 148(8): 084112, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29495776

RESUMEN

This paper presents the multi-channel generalization of the center-of-mass kinetic energy elimination approach [B. Simmen et al., Mol. Phys. 111, 2086 (2013)] when the Schrödinger equation is solved variationally with explicitly correlated Gaussian functions. The approach has immediate relevance in many-particle systems which are handled without the Born-Oppenheimer approximation and can be employed also for Dirac-type Hamiltonians. The practical realization and numerical properties of solving the Schrödinger equation in laboratory-frame Cartesian coordinates are demonstrated for the ground rovibronic state of the H2+={p+,p+,e-} ion and the H2 = {p+, p+, e-, e-} molecule.

7.
Chimia (Aarau) ; 70(4): 244-51, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27131108

RESUMEN

Reliable quantum chemical methods for the description of molecules with dense-lying frontier orbitals are needed in the context of many chemical compounds and reactions. Here, we review developments that led to our new computational toolbox which implements the quantum chemical density matrix renormalization group in a second-generation algorithm. We present an overview of the different components of this toolbox.

8.
J Chem Phys ; 142(19): 191101, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26001438

RESUMEN

We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single change to the derivation of the "Classical Wigner" approximation. Here, we show that the further approximation of this "Matsubara dynamics" gives rise to two popular heuristic methods for treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the frequencies of these fluctuations. These findings are consistent with previous numerical results and give explicit formulae for the terms that CMD and RPMD leave out.

9.
J Chem Phys ; 142(13): 134103, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25854224

RESUMEN

We show that a single change in the derivation of the linearized semiclassical-initial value representation (LSC-IVR or "classical Wigner approximation") results in a classical dynamics which conserves the quantum Boltzmann distribution. We rederive the (standard) LSC-IVR approach by writing the (exact) quantum time-correlation function in terms of the normal modes of a free ring-polymer (i.e., a discrete imaginary-time Feynman path), taking the limit that the number of polymer beads N → ∞, such that the lowest normal-mode frequencies take their "Matsubara" values. The change we propose is to truncate the quantum Liouvillian, not explicitly in powers of h(2) at h(0) (which gives back the standard LSC-IVR approximation), but in the normal-mode derivatives corresponding to the lowest Matsubara frequencies. The resulting "Matsubara" dynamics is inherently classical (since all terms O(h(2)) disappear from the Matsubara Liouvillian in the limit N → ∞) and conserves the quantum Boltzmann distribution because the Matsubara Hamiltonian is symmetric with respect to imaginary-time translation. Numerical tests show that the Matsubara approximation to the quantum time-correlation function converges with respect to the number of modes and gives better agreement than LSC-IVR with the exact quantum result. Matsubara dynamics is too computationally expensive to be applied to complex systems, but its further approximation may lead to practical methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA