Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Struct Dyn ; 8(4): 044304, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34395721

RESUMEN

We study the optical-pump induced ultrafast transient change of x-ray absorption at L 3 absorption resonances of the transition metals Ni and Fe in the Fe0.5Ni0.5 alloy. We find the effect for both elements to occur simultaneously on a femtosecond timescale. This effect may hence be used as a handy cross correlation scheme, providing a time-zero reference for ultrafast optical-pump soft x-ray-probe measurement. The method benefits from a relatively simple experimental setup as the sample itself acts as time-reference tool. In particular, this technique works with low flux ultrafast soft x-ray sources. The measurements are compared to the cross correlation method introduced in an earlier publication.

2.
Opt Express ; 28(20): 29540-29552, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33114852

RESUMEN

Brillouin light scattering (BLS) microscopy is a well established and powerful technique to study acoustic and magnetic excitations in the frequency domain with sub-micron spatial resolution. Many other spectroscopic techniques have benefited from the introduction of femtosecond laser sources to optically pump and stimulate the sample under investigation. In BLS microscopy, the use of femtosecond lasers as the excitation source introduces several challenges, primarily since the measured frequency shift is small and the signal levels are weak due to the low duty cycle of typical femtosecond lasers. Here we present a method to evade these challenges. A strong enhancement of the weak scattering amplitude on selected modes is observed by pumping the sample with a high repetition rate frequency comb laser source. The laser beam can be focused to the diffraction limit, providing a micron pumping area. We can thus preserve the innate high frequency and spatial resolution of BLS microscopy. Furthermore, we are able to induce a point-like source of mode-selected elementary excitations which propagate away from the pumping spot. We conclude that we have demonstrated frequency comb pumped BLS microscopy as an attractive tool for studies of ultrafast induced laser dynamics directly in the frequency domain.

3.
Nat Nanotechnol ; 15(1): 47-52, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873287

RESUMEN

In spin Hall nano-oscillators (SHNOs), pure spin currents drive local regions of magnetic films and nanostructures into auto-oscillating precession. If such regions are placed in close proximity to each other they can interact and may mutually synchronize. Here, we demonstrate robust mutual synchronization of two-dimensional SHNO arrays ranging from 2 × 2 to 8 × 8 nano-constrictions, observed both electrically and using micro-Brillouin light scattering microscopy. On short time scales, where the auto-oscillation linewidth [Formula: see text] is governed by white noise, the signal quality factor, [Formula: see text], increases linearly with the number of mutually synchronized nano-constrictions (N), reaching 170,000 in the largest arrays. We also show that SHNO arrays exposed to two independently tuned microwave frequencies exhibit the same synchronization maps as can be used for neuromorphic vowel recognition. Our demonstrations may hence enable the use of SHNO arrays in two-dimensional oscillator networks for high-quality microwave signal generation and ultra-fast neuromorphic computing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...