Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333348

RESUMEN

Bacterial species often undergo rampant recombination yet maintain cohesive genomic identity. Ecological differences can generate recombination barriers between species and sustain genomic clusters in the short term. But can these forces prevent genomic mixing during long-term coevolution? Cyanobacteria in Yellowstone hot springs comprise several diverse species that have coevolved for hundreds of thousands of years, providing a rare natural experiment. By analyzing more than 300 single-cell genomes, we show that despite each species forming a distinct genomic cluster, much of the diversity within species is the result of hybridization driven by selection, which has mixed their ancestral genotypes. This widespread mixing is contrary to the prevailing view that ecological barriers can maintain cohesive bacterial species and highlights the importance of hybridization as a source of genomic diversity.

2.
Nucleic Acids Res ; 51(8): e46, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36912074

RESUMEN

16S rRNA gene sequence clustering is an important tool in characterizing the diversity of microbial communities. As 16S rRNA gene data sets are growing in size, existing sequence clustering algorithms increasingly become an analytical bottleneck. Part of this bottleneck is due to the substantial computational cost expended on small clusters and singleton sequences. We propose an iterative sampling-based 16S rRNA gene sequence clustering approach that targets the largest clusters in the data set, allowing users to stop the clustering process when sufficient clusters are available for the specific analysis being targeted. We describe a probabilistic analysis of the iterative clustering process that supports the intuition that the clustering process identifies the larger clusters in the data set first. Using real data sets of 16S rRNA gene sequences, we show that the iterative algorithm, coupled with an adaptive sampling process and a mode-shifting strategy for identifying cluster representatives, substantially speeds up the clustering process while being effective at capturing the large clusters in the data set. The experiments also show that SCRAPT (Sample, Cluster, Recruit, AdaPt and iTerate) is able to produce operational taxonomic units that are less fragmented than popular tools: UCLUST, CD-HIT and DNACLUST. The algorithm is implemented in the open-source package SCRAPT. The source code used to generate the results presented in this paper is available at https://github.com/hsmurali/SCRAPT.


Asunto(s)
Algoritmos , Programas Informáticos , ARN Ribosómico 16S/genética , Genes de ARNr , Análisis por Conglomerados
3.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168205

RESUMEN

For decades, the 16S rRNA gene has been used to taxonomically classify prokaryotic species and to taxonomically profile microbial communities. The 16S rRNA gene has been criticized for being too conserved to differentiate between distinct species. We argue that the inability to differentiate between species is not a unique feature of the 16S rRNA gene. Rather, we observe the gradual loss of species-level resolution for other marker genes as the number of gene sequences increases in reference databases. We demonstrate this effect through the analysis of three commonly used databases of nearly-universal prokaryotic marker genes: the SILVA 16S rRNA gene database, the Genome Taxonomy Database (GTDB), and a set of 40 taxonomically-informative single-copy genes. Our results reflect a more fundamental property of the taxonomies themselves and have broad implications for bioinformatic analyses beyond taxonomic classification. Effective solutions for fine-level taxonomic classification require a more precise, and operationally-relevant, definition of the taxonomic labels being sought, and the use of combinations of genomic markers in the classification process. Importance: The use of reference databases for assigning taxonomic labels to genomic and metagenomic sequences is a fundamental bioinformatic task in the characterization of microbial communities. The increasing accessibility of high throughput sequencing has led to a rapid increase in the size and number of sequences in databases. This has been beneficial for improving our understanding of the global microbial genetic diversity. However, there is evidence that as the microbial diversity is more densely sampled, increasingly longer genomic segments are needed to differentiate between distinct species. The scientific community needs to be aware of this issue and needs to develop methods that better account for it when assigning taxonomic labels to metagenomic sequences from microbial communities.

4.
Front Microbiol ; 14: 1240957, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235435

RESUMEN

Introduction: A common task in the analysis of microbial communities involves assigning taxonomic labels to the sequences derived from organisms found in the communities. Frequently, such labels are assigned using machine learning algorithms that are trained to recognize individual taxonomic groups based on training data sets that comprise sequences with known taxonomic labels. Ideally, the training data should rely on labels that are experimentally verified-formal taxonomic labels require knowledge of physical and biochemical properties of organisms that cannot be directly inferred from sequence alone. However, the labels associated with sequences in biological databases are most commonly computational predictions which themselves may rely on computationally-generated data-a process commonly referred to as "transitive annotation." Methods: In this manuscript we explore the implications of training a machine learning classifier (the Ribosomal Database Project's Bayesian classifier in our case) on data that itself has been computationally generated. We generate new training examples based on 16S rRNA data from a metagenomic experiment, and evaluate the extent to which the taxonomic labels predicted by the classifier change after re-training. Results: We demonstrate that even a few computationally-generated training data points can significantly skew the output of the classifier to the point where entire regions of the taxonomic space can be disturbed. Discussion and conclusions: We conclude with a discussion of key factors that affect the resilience of classifiers to transitively-annotated training data, and propose best practices to avoid the artifacts described in our paper.

5.
Front Microbiol ; 12: 638561, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717033

RESUMEN

High-throughput sequencing has revolutionized the field of microbiology, however, reconstructing complete genomes of organisms from whole metagenomic shotgun sequencing data remains a challenge. Recovered genomes are often highly fragmented, due to uneven abundances of organisms, repeats within and across genomes, sequencing errors, and strain-level variation. To address the fragmented nature of metagenomic assemblies, scientists rely on a process called binning, which clusters together contigs inferred to originate from the same organism. Existing binning algorithms use oligonucleotide frequencies and contig abundance (coverage) within and across samples to group together contigs from the same organism. However, these algorithms often miss short contigs and contigs from regions with unusual coverage or DNA composition characteristics, such as mobile elements. Here, we propose that information from assembly graphs can assist current strategies for metagenomic binning. We use MetaCarvel, a metagenomic scaffolding tool, to construct assembly graphs where contigs are nodes and edges are inferred based on paired-end reads. We developed a tool, Binnacle, that extracts information from the assembly graphs and clusters scaffolds into comprehensive bins. Binnacle also provides wrapper scripts to integrate with existing binning methods. The Binnacle pipeline can be found on GitHub (https://github.com/marbl/binnacle). We show that binning graph-based scaffolds, rather than contigs, improves the contiguity and quality of the resulting bins, and captures a broader set of the genes of the organisms being reconstructed.

6.
Viruses ; 12(12)2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33322070

RESUMEN

Viruses represent important test cases for data federation due to their genome size and the rapid increase in sequence data in publicly available databases. However, some consequences of previously decentralized (unfederated) data are lack of consensus or comparisons between feature annotations. Unifying or displaying alternative annotations should be a priority both for communities with robust entry representation and for nascent communities with burgeoning data sources. To this end, during this three-day continuation of the Virus Hunting Toolkit codeathon series (VHT-2), a new integrated and federated viral index was elaborated. This Federated Index of Viral Experiments (FIVE) integrates pre-existing and novel functional and taxonomy annotations and virus-host pairings. Variability in the context of viral genomic diversity is often overlooked in virus databases. As a proof-of-concept, FIVE was the first attempt to include viral genome variation for HIV, the most well-studied human pathogen, through viral genome diversity graphs. As per the publication of this manuscript, FIVE is the first implementation of a virus-specific federated index of such scope. FIVE is coded in BigQuery for optimal access of large quantities of data and is publicly accessible. Many projects of database or index federation fail to provide easier alternatives to access or query information. To this end, a Python API query system was developed to enhance the accessibility of FIVE.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Metagenómica/métodos , Virus/genética , Biología Computacional/métodos , Variación Genética , Genoma Viral , Interacciones Huésped-Patógeno , Humanos , Interfaz Usuario-Computador , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virus/metabolismo , Navegador Web
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...