Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cancer Res Ther ; 19(Supplement): S0, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37147973

RESUMEN

Purpose: The spot position is an important beam parameter in the quality assurance of scanning proton therapy. In this study, we investigated dosimetric impact of systematic 15 spot position errors (SSPE) in spot scanning proton therapy using three types of optimization methods of head and neck tumor. Materials and Methods: The planning simulation was performed with ± 2 mm model SSPE in the X and Y directions. Treatment plans were created using intensity-modulated proton therapy (IMPT) and single-field uniform dose (SFUD). IMPT plans were created by two optimization methods: with worst-case optimization (WCO-IMPT) and without (IMPT). For clinical target volume (CTV), D95%, D50%, and D2cc were used for analysis. For organs at risk (OAR), Dmean was used to analyze the brain, cochlea, and parotid, and Dmax was used to analyze brainsetem, chiasm, optic nerve, and cord. Results: For CTV, the variation (1 standard deviation) of D95% was ± 0.88%, 0.97% and 0.97% to WCO-IMPT, IMPT, and SFUD plan. The variation of D50% and D2cc of CTV showed <0.5% variation in all plans. The dose variation due to SSPE was larger in OAR, and worst-case optimization reduced the dose variation, especially in Dmax. The analysis results showed that SSPE has little impact on SFUD. Conclusions: We clarified the impact of SSPE on dose distribution for three optimization methods. SFUD was shown to be a robust treatment plan for OARs, and the WCO can be used to increase robustness to SSPE in IMPT.


Asunto(s)
Neoplasias de Cabeza y Cuello , Terapia de Protones , Radioterapia de Intensidad Modulada , Panencefalitis Esclerosante Subaguda , Humanos , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Radioterapia de Intensidad Modulada/métodos , Órganos en Riesgo , Dosificación Radioterapéutica
2.
Phys Med ; 92: 95-101, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34891108

RESUMEN

PURPOSE: Accurate calculation of the proton beam range inside a patient is an important topic in proton therapy. In recent times, a computed tomography (CT) image reconstruction algorithm was developed for treatment planning to reduce the impact of the variation of the CT number with changes in imaging conditions. In this study, we investigated the usefulness of this new reconstruction algorithm (DirectDensity™: DD) in proton therapy based on its comparison with filtered back projection (FBP). METHODS: We evaluated the effects of variations in the X-ray tube potential and target size on the FBP- and DD-image values and investigated the usefulness of the DD algorithm based on the range variations and dosimetric quantity variations. RESULTS: For X-ray tube potential variations, the range variation in the case of FBP was up to 12.5 mm (20.8%), whereas that of DD was up to 3.3 mm (5.6%). Meanwhile, for target size variations, the range variation in the case of FBP was up to 2.2 mm (2.5%), whereas that of DD was up to 0.9 mm (1.4%). Moreover, the variations observed in the case of DD were smaller than those of FBP for all dosimetric quantities. CONCLUSION: The dose distributions obtained using DD were more robust against variations in the CT imaging conditions (X-ray tube potential and target size) than those obtained using FBP, and the range variations were often less than the dose calculation grid (2 mm). Therefore, the DD algorithm is effective in a robust workflow and reduces uncertainty in range calculations.


Asunto(s)
Terapia de Protones , Algoritmos , Humanos , Fantasmas de Imagen , Dosis de Radiación , Tomografía Computarizada por Rayos X
3.
Radiol Phys Technol ; 14(3): 328-335, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34313911

RESUMEN

The purpose of this study was to evaluate the effect of quality assurance (QA)-related setup errors in passive proton therapy for prostate cancer with and without a hydrogel spacer. We used 20 typical computed tomography (CT) images of prostate cancer: 10 patients with and 10 patients without spacers. The following 12 model errors were assumed: output error ± 2%, range error ± 1 mm, setup error ± 1 mm for three directions, and multileaf collimator (MLC) position error ± 1 mm. We created verification plans with model errors and compared the prostate-rectal (PR) distance and dose indices with and without the spacer. The mean PR distance at the isocenter was 1.1 ± 1.3 mm without the spacer and 12.9 ± 2.9 mm with the spacer (P < 0.001). The mean rectum V53.5 GyE, V50 GyE, and V34.5 GyE in the original plan were 2.3%, 4.1%, and 12.1% without the spacer and 0.1%, 0.4%, and 3.3% with the spacer (P = 0.0011, < 0.001, and < 0.001). The effects of the range and lateral setup errors were small; however, the effects of the vertical/long setup and MLC error were significant in the cases without the spacer. The means of the maximum absolute change from original plans across all scenarios in the rectum V53.5 GyE, V50 GyE, and V34.5 GyE were 1.3%, 1.5%, and 2.3% without the spacer, and 0.2%, 0.4%, and 1.3% with the spacer (P < 0.001, < 0.001, and = 0.0019). This study indicated that spacer injections were also effective in reducing the change in the rectal dose due to setup errors.


Asunto(s)
Neoplasias de la Próstata , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Hidrogeles , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
4.
J Appl Clin Med Phys ; 20(1): 258-264, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30597762

RESUMEN

The purpose of this study was to provide periodic quality assurance (QA) methods for respiratory-gated proton beam with a range modulation wheel (RMW) and to clarify the characteristics and long-term stability of the respiratory-gated proton beam. A two-dimensional detector array and a solid water phantom were used to measure absolute dose, spread-out Bragg peak (SOBP) width and proton range for monthly QA. SOBP width and proton range were measured using an oblique incidence beam to the lateral side of a solid water phantom and compared between with and without a gating proton beam. To measure the delay time of beam-on/off for annual QA, we collected the beam-on/off signals and the dose monitor-detected pulse. We analyzed the results of monthly QA over a 15-month period and investigated the delay time by machine signal analysis. The dose deviations at proximal, SOBP center and distal points were -0.083 ± 0.25%, 0.026 ± 0.20%, and -0.083 ± 0.35%, respectively. The maximum dose deviation between with and without respiratory gating was -0.95% at the distal point and other deviations were within ±0.5%. Proximal and SOBP center doses showed the same trend over a 15-month period. Delay times of beam-on/off for 200 MeV/SOBP 16 cm were 140.5 ± 0.8 ms and 22.3 ± 13.0 ms, respectively. Delay times for 160 MeV/SOBP 10 cm were 167.5 ± 15.1 ms and 19.1 ± 9.8 ms. Our beam delivery system with the RMW showed sufficient stability for respiratory-gated proton therapy and the system did not show dependency on the energy and the respiratory wave form. The delay times of beam-on/off were within expectations. The proposed QA methods will be useful for managing the quality of respiratory-gated proton beams and other beam delivery systems.


Asunto(s)
Neoplasias/radioterapia , Fantasmas de Imagen , Terapia de Protones/métodos , Garantía de la Calidad de Atención de Salud/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Humanos , Método de Montecarlo , Dosificación Radioterapéutica , Dispersión de Radiación
5.
Pract Radiat Oncol ; 9(2): e149-e155, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30336269

RESUMEN

PURPOSE: Suppression of respiratory movement of the liver would be desirable for high-precision radiation therapy for liver tumors. We aimed to investigate the effect of our original device-free compressed shell fixation method and breathing instruction on suppression of respiratory movement. The characteristics of liver motion based on the movement of a fiducial marker were also analyzed. METHODS AND MATERIALS: First, respiratory amplitudes of the liver with the device-free compressed shell were analyzed from the data of 146 patients. The effect of this shell fixing method on liver movement was evaluated. Second, as another cohort study with 166 patients, interfractional internal motion of the liver for patients fixed in the shell was calculated using the fiducial marker coordinate data of images for position setting before daily irradiation. Third, in another 12 patients, intrafractional internal motion was calculated from the fiducial marker coordinate data using x-ray images before and after irradiation. RESULTS: The median respiratory movement without the shell, after fixing with the shell, and after instructing on the breathing method with the shell was 14.2 (interquartile range, 10.7-19.8), 11.5 (8.6-17.5), and 10.4 mm (7.3-15.8), respectively. Systematic and random errors of interfractional internal motion were all ≤2 mm in the left-right and anteroposterior directions and 3.7 and 3.0 mm, respectively, in the craniocaudal direction. Systematic and random errors of intrafractional internal motion were all ≤1.3 mm in the left-right and anteroposterior directions and 0.8 and 2.4 mm, respectively, in the craniocaudal direction. CONCLUSIONS: The device-free compressed shell fixation method was effective in suppressing the respiratory movement of the liver. Irradiation position matching using the fiducial marker can correct the interfractional internal motion on each day, which would contribute to the reduction of the margin to be given around the target.


Asunto(s)
Neoplasias Hepáticas/radioterapia , Movimientos de los Órganos , Posicionamiento del Paciente/métodos , Terapia de Protones/métodos , Radioterapia Guiada por Imagen/métodos , Marcadores Fiduciales , Humanos , Hígado/diagnóstico por imagen , Hígado/fisiología , Neoplasias Hepáticas/diagnóstico por imagen , Masculino , Estudios Prospectivos , Planificación de la Radioterapia Asistida por Computador/métodos , Mecánica Respiratoria/fisiología , Posición Supina , Tomografía Computarizada por Rayos X
6.
J Appl Clin Med Phys ; 19(1): 132-137, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29178546

RESUMEN

In this study, we evaluate dosimetric advantages of using patient-specific aperture system with intensity-modulated proton therapy (IMPT) for head and neck tumors at the shallow depth. We used four types of patient-specific aperture system (PSAS) to irradiate shallow regions less than 4 g/cm2 with a sharp lateral penumbra. Ten head and neck IMPT plans with or without aperture were optimized separately with the same 95% prescription dose and same dose constraint for organs at risk (OARs). The plans were compared using dose volume histograms (DVHs), dose distributions, and some dose indexes such as volume receiving 50% of the prescribed dose (V50 ), mean or maximum dose (Dmean and Dmax ) to the OARs. All examples verified in this study had decreased V50 and OAR doses. Average, maximum, and minimum relative reductions of V50 were 15.4%, 38.9%, and 1.0%, respectively. Dmax and Dmean of OARs were decreased by 0.3% to 25.7% and by 1.0% to 46.3%, respectively. The plans with the aperture over more than half of the field showed decreased V50 or OAR dose by more than 10%. The dosimetric advantage of patient-specific apertures with IMPT was clarified in many cases. The PSAS has some dosimetric advantages for clinical use, and in some cases, it enables to fulfill dose constraints.


Asunto(s)
Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/radioterapia , Órganos en Riesgo/efectos de la radiación , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...