Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PNAS Nexus ; 2(4): pgad120, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37124400

RESUMEN

Lloviu virus (LLOV) is a novel filovirus detected in Schreiber's bats in Europe. The isolation of the infectious LLOV from bats has raised public health concerns. However, the virological and molecular characteristics of LLOV remain largely unknown. The nucleoprotein (NP) of LLOV encapsidates the viral genomic RNA to form a helical NP-RNA complex, which acts as a scaffold for nucleocapsid formation and de novo viral RNA synthesis. In this study, using single-particle cryoelectron microscopy, we determined two structures of the LLOV NP-RNA helical complex, comprising a full-length and a C-terminally truncated NP. The two helical structures were identical, demonstrating that the N-terminal region determines the helical arrangement of the NP. The LLOV NP-RNA protomers displayed a structure similar to that in the Ebola and Marburg virus, but the spatial arrangements in the helix differed. Structure-based mutational analysis identified amino acids involved in the helical assembly and viral RNA synthesis. These structures advance our understanding of the filovirus nucleocapsid formation and provide a structural basis for the development of antifiloviral therapeutics.

3.
Sci Immunol ; 7(76): eabj8760, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36269840

RESUMEN

Invariant natural killer T (iNKT) cells are a group of innate-like T lymphocytes that recognize lipid antigens. They are supposed to be tissue resident and important for systemic and local immune regulation. To investigate the heterogeneity of iNKT cells, we recharacterized iNKT cells in the thymus and peripheral tissues. iNKT cells in the thymus were divided into three subpopulations by the expression of the natural killer cell receptor CD244 and the chemokine receptor CXCR6 and designated as C0 (CD244-CXCR6-), C1 (CD244-CXCR6+), or C2 (CD244+CXCR6+) iNKT cells. The development and maturation of C2 iNKT cells from C0 iNKT cells strictly depended on IL-15 produced by thymic epithelial cells. C2 iNKT cells expressed high levels of IFN-γ and granzymes and exhibited more NK cell-like features, whereas C1 iNKT cells showed more T cell-like characteristics. C2 iNKT cells were influenced by the microbiome and aging and suppressed the expression of the autoimmune regulator AIRE in the thymus. In peripheral tissues, C2 iNKT cells were circulating that were distinct from conventional tissue-resident C1 iNKT cells. Functionally, C2 iNKT cells protected mice from the tumor metastasis of melanoma cells by enhancing antitumor immunity and promoted antiviral immune responses against influenza virus infection. Furthermore, we identified human CD244+CXCR6+ iNKT cells with high cytotoxic properties as a counterpart of mouse C2 iNKT cells. Thus, this study reveals a circulating subset of iNKT cells with NK cell-like properties distinct from conventional tissue-resident iNKT cells.


Asunto(s)
Células T Asesinas Naturales , Ratones , Humanos , Animales , Células T Asesinas Naturales/metabolismo , Células T Asesinas Naturales/patología , Interleucina-15 , Antivirales , Granzimas , Receptores de Células Asesinas Naturales , Receptores de Quimiocina/metabolismo , Lípidos
4.
Nat Commun ; 13(1): 4399, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931673

RESUMEN

The coronavirus membrane protein (M) is the most abundant viral structural protein and plays a central role in virus assembly and morphogenesis. However, the process of M protein-driven virus assembly are largely unknown. Here, we report the cryo-electron microscopy structure of the SARS-CoV-2 M protein in two different conformations. M protein forms a mushroom-shaped dimer, composed of two transmembrane domain-swapped three-helix bundles and two intravirion domains. M protein further assembles into higher-order oligomers. A highly conserved hinge region is key for conformational changes. The M protein dimer is unexpectedly similar to SARS-CoV-2 ORF3a, a viral ion channel. Moreover, the interaction analyses of M protein with nucleocapsid protein (N) and RNA suggest that the M protein mediates the concerted recruitment of these components through the positively charged intravirion domain. Our data shed light on the M protein-driven virus assembly mechanism and provide a structural basis for therapeutic intervention targeting M protein.


Asunto(s)
COVID-19 , SARS-CoV-2 , Microscopía por Crioelectrón , Humanos , Proteínas de la Membrana , Ensamble de Virus
5.
Commun Biol ; 5(1): 516, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637255

RESUMEN

The development of an in vitro cell model that can be used to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research is expected. Here we conducted infection experiments in bronchial organoids (BO) and an BO-derived air-liquid interface model (BO-ALI) using 8 SARS-CoV-2 variants. The infection efficiency in BO-ALI was more than 1,000 times higher than that in BO. Among the bronchial epithelial cells, we found that ciliated cells were infected with the virus, but basal cells were not. Ciliated cells died 7 days after the viral infection, but basal cells survived after the viral infection and differentiated into ciliated cells. Fibroblast growth factor 10 signaling was essential for this differentiation. These results indicate that BO and BO-ALI may be used not only to evaluate the cell response to SARS-CoV-2 and coronavirus disease 2019 (COVID-19) therapeutic agents, but also for airway regeneration studies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Bronquios , Humanos , Organoides
6.
Commun Biol ; 5(1): 473, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35614128

RESUMEN

In the ongoing COVID-19 pandemic, rapid and sensitive diagnosis of viral infection is a critical deterrent to the spread of SARS-CoV-2. To this end, we developed an automated amplification-free digital RNA detection platform using CRISPR-Cas13a and microchamber device (opn-SATORI), which automatically completes a detection process from sample mixing to RNA quantification in clinical specimens within ~9 min. Using the optimal Cas13a enzyme and magnetic beads technology, opn-SATORI detected SARS-CoV-2 genomic RNA with a LoD of < 6.5 aM (3.9 copies µL-1), comparable to RT-qPCR. Additionally, opn-SATORI discriminated between SARS-CoV-2 variants of concern, including alpha, delta, and omicron, with 98% accuracy. Thus, opn-SATORI can serve as a rapid and convenient diagnostic platform for identifying several types of viral infections.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Pandemias , ARN Viral/genética , SARS-CoV-2/genética
7.
Nat Commun ; 13(1): 1191, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246537

RESUMEN

The nucleoprotein (NP) of Marburg virus (MARV), a close relative of Ebola virus (EBOV), encapsidates the single-stranded, negative-sense viral genomic RNA (vRNA) to form the helical NP-RNA complex. The NP-RNA complex constitutes the core structure for the assembly of the nucleocapsid that is responsible for viral RNA synthesis. Although appropriate interactions among NPs and RNA are required for the formation of nucleocapsid, the structural basis of the helical assembly remains largely elusive. Here, we show the structure of the MARV NP-RNA complex determined using cryo-electron microscopy at a resolution of 3.1 Å. The structures of the asymmetric unit, a complex of an NP and six RNA nucleotides, was very similar to that of EBOV, suggesting that both viruses share common mechanisms for the nucleocapsid formation. Structure-based mutational analysis of both MARV and EBOV NPs identified key residues for helical assembly and subsequent viral RNA synthesis. Importantly, most of the residues identified were conserved in both viruses. These findings provide a structural basis for understanding the nucleocapsid formation and contribute to the development of novel antivirals against MARV and EBOV.


Asunto(s)
Ebolavirus , Marburgvirus , Microscopía por Crioelectrón , Ebolavirus/genética , Marburgvirus/genética , Nucleoproteínas/química , ARN Viral/química , ARN Viral/genética
8.
J Virol ; 96(6): e0164121, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35044211

RESUMEN

The influenza A virus genome is composed of eight single-stranded negative-sense viral RNA segments (vRNAs). The eight vRNAs are selectively packaged into each progeny virion. This process likely involves specific interactions between the vRNAs via segment-specific packaging signals located in both the 3'- and 5'-terminal regions of the respective vRNAs. To assess the importance of vRNA-vRNA interactions via packaging signals for selective genome packaging, we generated mutant viruses possessing silent mutations in the packaging signal region of the hemagglutinin (HA) vRNA. A mutant virus possessing silent mutations in nucleotides (nt) 1664 to 1676 resulted in defects in HA vRNA incorporation and showed a reduction in viral growth. After serial passage, the mutant virus acquired additional mutations in the 5'-terminal packaging signal regions of both the HA and polymerase basic 2 (PB2) vRNAs. These mutations contributed to the recovery of viral growth and HA vRNA packaging efficiency. In addition, an RNA-RNA interaction between the 5' ends of HA and PB2 vRNAs was confirmed in vitro, and this interaction was disrupted following the introduction of silent mutations in the HA vRNA. Thus, our results demonstrated that RNA-RNA interactions between the packaging signal regions of HA vRNA and PB2 vRNA are important for selective genome packaging. IMPORTANCE While numerous viral genomes comprise a single genome segment, the influenza A virus possesses eight segmented genomes. Influenza A virus can benefit from having a segmented genome because the segments can reassort with other strains of the influenza virus to create new genetically distinct strains. The influenza A virus efficiently incorporates one copy of each of its eight genomic segments per viral particle. However, the mechanism by which each segment is specifically selected is poorly understood. The genome segments contain RNA signals that facilitate the incorporation of segments into virus particles. These regions may facilitate specific interactions between the genome segments, creating an eight-segment complex, which can then be packaged into individual particles. In this study, we provide evidence that RNA signals contribute to specific interactions between two of the influenza virus genome segments.


Asunto(s)
Virus de la Influenza A , ARN Viral , Empaquetamiento del Genoma Viral , Genoma Viral/genética , Hemaglutininas/metabolismo , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Mutación , ARN Viral/genética , ARN Viral/metabolismo , Empaquetamiento del Genoma Viral/genética , Virión/metabolismo , Ensamble de Virus/genética
9.
Front Psychol ; 12: 767101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925169

RESUMEN

Implicit theories refer to two assumptions that people make about the malleability of one's ability. Previous studies have argued that incremental theorists (who believe that ability is malleable) are more adaptive than entity theorists (who believe that ability is fixed) when facing achievement setbacks. In the present research, we assumed that the adaptive implicit theory would be different when people could choose from a wider range of tasks. It was hypothesized that incremental theorists would sustain their efforts in the first task even when it was difficult, whereas entity theorists would try to find the most appropriate task. In a pair of laboratory experiments, participants had to maximize their outcomes when allowed to choose a task to engage in, from two options. When participants were allowed to practice the two tasks (Study 1), incremental theorists tended to allocate their effort solely to the first task, whereas entity theorists tended to put equal effort into both. When participants were informed that they could switch from the assigned task (Study 2), incremental theorists tended to persist in the first task regardless of its difficulty, whereas entity theorists tended to switch more quickly if the task was difficult. These results supported our hypothesis of two effort allocation strategies and implied that, in certain situations, entity theorists could be more adaptive than incremental theorists. Based on these findings, we conducted a social survey on the difficulty of switching tasks with a real-life setting as an environmental factor that determines the adaptive implicit theory (Study 3). It was revealed that the academic performance of incremental and entity theorists was moderated by the difficulty of switching tasks in their learning environment at school. Cultural differences in implicit theories may be explained by differences in the difficulty of switching tasks in education and career choices in each society.

10.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884521

RESUMEN

The Coronavirus Disease (COVID-19) pandemic is demanding the rapid action of the authorities and scientific community in order to find new antimicrobial solutions that could inactivate the pathogen SARS-CoV-2 that causes this disease. Gram-positive bacteria contribute to severe pneumonia associated with COVID-19, and their resistance to antibiotics is exponentially increasing. In this regard, non-woven fabrics are currently used for the fabrication of infection prevention clothing such as face masks, caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons and shoe covers as protective tools against viral and bacterial infections. However, these non-woven fabrics are made of materials that do not exhibit intrinsic antimicrobial activity. Thus, we have here developed non-woven fabrics with antimicrobial coatings of cranberry extracts capable of inactivating enveloped viruses such as SARS-CoV-2 and the bacteriophage phi 6 (about 99% of viral inactivation in 1 min of viral contact), and two multidrug-resistant bacteria: the methicillin-resistant Staphylococcus aureus and the methicillin-resistant Staphylococcus epidermidis. The morphology, thermal and mechanical properties of the produced filters were characterized by optical and electron microscopy, differential scanning calorimetry, thermogravimetry and dynamic mechanical thermal analysis. The non-toxicity of these advanced technologies was ensured using a Caenorhabditis elegans in vivo model. These results open up a new prevention path using natural and biodegradable compounds for the fabrication of infection prevention clothing in the current COVID-19 pandemic and microbial resistant era.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Extractos Vegetales/farmacología , SARS-CoV-2/efectos de los fármacos , Textiles , Vaccinium macrocarpon/química , Animales , Antibacterianos , Antiinfecciosos , Bacteriófago phi 6/efectos de los fármacos , COVID-19/prevención & control , Caenorhabditis elegans/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos
11.
ACS Omega ; 6(36): 23495-23503, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34514272

RESUMEN

Infection prevention clothing is becoming an essential protective tool in the current pandemic, especially because now we know that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can easily infect humans in poorly ventilated indoor spaces. However, commercial infection prevention clothing is made of fabrics that are not capable of inactivating the virus. Therefore, viral infections of symptomatic and asymptomatic individuals wearing protective clothing such as masks can occur through aerosol transmission or by contact with the contaminated surfaces of the masks, which are suspected as an increasing source of highly infectious biological waste. Herein, we report an easy fabrication method of a novel antiviral non-woven fabric containing polymer filaments that were coated with solidified hand soap. This extra protective fabric is capable of inactivating enveloped viruses such as SARS-CoV-2 and phage Φ6 within 1 min of contact. In this study, this antiviral fabric was used to fabricate an antiviral face mask and did not show any cytotoxic effect in human keratinocyte HaCaT cells. Furthermore, this antiviral non-woven fabric could be used for the fabrication of other infection prevention clothing such as caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons, and shoe covers. Therefore, this low-cost technology could provide a wide range of infection-protective tools to combat COVID-19 and future pandemics in developed and underdeveloped countries.

12.
Int J Mol Sci ; 22(17)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34502431

RESUMEN

Transparent materials used for facial protection equipment provide protection against microbial infections caused by viruses and bacteria, including multidrug-resistant strains. However, transparent materials used for this type of application are made of materials that do not possess antimicrobial activity. They just avoid direct contact between the person and the biological agent. Therefore, healthy people can become infected through contact of the contaminated material surfaces and this equipment constitute an increasing source of infectious biological waste. Furthermore, infected people can transmit microbial infections easily because the protective equipment do not inactivate the microbial load generated while breathing, sneezing or coughing. In this regard, the goal of this work consisted of fabricating a transparent face shield with intrinsic antimicrobial activity that could provide extra-protection against infectious agents and reduce the generation of infectious waste. Thus, a single-use transparent antimicrobial face shield composed of polyethylene terephthalate and an antimicrobial coating of benzalkonium chloride has been developed for the next generation of facial protective equipment. The antimicrobial coating was analyzed by atomic force microscopy and field emission scanning electron microscopy with elemental analysis. This is the first facial transparent protective material capable of inactivating enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in less than one minute of contact, and the methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Bacterial infections contribute to severe pneumonia associated with the SARS-CoV-2 infection, and their resistance to antibiotics is increasing. Our extra protective broad-spectrum antimicrobial composite material could also be applied for the fabrication of other facial protective tools such as such as goggles, helmets, plastic masks and space separation screens used for counters or vehicles. This low-cost technology would be very useful to combat the current pandemic and protect health care workers from multidrug-resistant infections in developed and underdeveloped countries.


Asunto(s)
Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Equipo de Protección Personal , Antiinfecciosos/química , Bacteriófago phi 6/efectos de los fármacos , Compuestos de Benzalconio/química , Compuestos de Benzalconio/farmacología , COVID-19/patología , COVID-19/virología , Pruebas Antimicrobianas de Difusión por Disco , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Tereftalatos Polietilenos/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/aislamiento & purificación , Staphylococcus epidermidis/efectos de los fármacos
13.
Viruses ; 13(9)2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34578344

RESUMEN

Lassa virus (LASV)-a member of the family Arenaviridae-causes Lassa fever in humans and is endemic in West Africa. Currently, no approved drugs are available. We screened 2480 small compounds for their potential antiviral activity using pseudotyped vesicular stomatitis virus harboring the LASV glycoprotein (VSV-LASVGP) and a related prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV). Follow-up studies confirmed that CP100356 hydrochloride (CP100356), a specific P-glycoprotein (P-gp) inhibitor, suppressed VSV-LASVGP, LCMV, and LASV infection with half maximal inhibitory concentrations of 0.52, 0.54, and 0.062 µM, respectively, without significant cytotoxicity. Although CP100356 did not block receptor binding at the cell surface, it inhibited low-pH-dependent membrane fusion mediated by arenavirus glycoproteins. P-gp downregulation did not cause a significant reduction in either VSV-LASVGP or LCMV infection, suggesting that P-gp itself is unlikely to be involved in arenavirus entry. Finally, our data also indicate that CP100356 inhibits the infection by other mammarenaviruses. Thus, our findings suggest that CP100356 can be considered as an effective virus entry inhibitor for LASV and other highly pathogenic mammarenaviruses.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/efectos de los fármacos , Arenaviridae/metabolismo , Isoquinolinas/farmacología , Virus Lassa/efectos de los fármacos , Quinazolinas/farmacología , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/farmacología , Chlorocebus aethiops , Humanos , Fiebre de Lassa/tratamiento farmacológico , Fiebre de Lassa/virología , Virus de la Coriomeningitis Linfocítica , Receptores Virales , Células Vero , Estomatitis Vesicular/virología , Inhibidores de Proteínas Virales de Fusión/farmacología
14.
Commun Biol ; 4(1): 858, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244608

RESUMEN

The single-stranded, negative-sense, viral genomic RNA (vRNA) of influenza A virus is encapsidated by viral nucleoproteins (NPs) and an RNA polymerase to form a ribonucleoprotein complex (vRNP) with a helical, rod-shaped structure. The vRNP is responsible for transcription and replication of the vRNA. However, the vRNP conformation during RNA synthesis is not well understood. Here, using high-speed atomic force microscopy and cryo-electron microscopy, we investigated the native structure of influenza A vRNPs during RNA synthesis in vitro. Two distinct types of vRNPs were observed in association with newly synthesized RNAs: an intact, helical rod-shaped vRNP connected with a folded RNA and a deformed vRNP associated with a looped RNA. Interestingly, the looped RNA was a double-stranded RNA, which likely comprises a nascent RNA and the template RNA detached from NPs of the vRNP. These results suggest that while some vRNPs keep their helical structures during RNA synthesis, for the repeated cycle of RNA synthesis, others accidentally become structurally deformed, which likely results in failure to commence or continue RNA synthesis. Thus, our findings provide the ultrastructural feature of vRNPs during RNA synthesis.


Asunto(s)
Virus de la Influenza A/metabolismo , ARN Viral/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Microscopía por Crioelectrón/métodos , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Gripe Humana/virología , Microscopía de Fuerza Atómica/métodos , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/ultraestructura , Proteínas Virales/genética , Proteínas Virales/ultraestructura , Replicación Viral/genética
15.
Cell Rep ; 36(2): 109385, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34237284

RESUMEN

Administration of convalescent plasma or neutralizing monoclonal antibodies (mAbs) is a potent therapeutic option for coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, SARS-CoV-2 variants with mutations in the spike protein have emerged in many countries. To evaluate the efficacy of neutralizing antibodies induced in convalescent patients against emerging variants, we isolate anti-spike mAbs from two convalescent COVID-19 patients infected with prototypic SARS-CoV-2 by single-cell sorting of immunoglobulin-G-positive (IgG+) memory B cells. Anti-spike antibody induction is robust in these patients, and five mAbs have potent neutralizing activities. The efficacy of most neutralizing mAbs and convalescent plasma samples is maintained against B.1.1.7 and mink cluster 5 variants but is significantly decreased against variants B.1.351 from South Africa and P.1 from Brazil. However, mAbs with a high affinity for the receptor-binding domain remain effective against these neutralization-resistant variants. Rapid spread of these variants significantly impacts antibody-based therapies and vaccine strategies against SARS-CoV-2.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/terapia , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/inmunología , COVID-19/virología , Línea Celular , Células HEK293 , Humanos , Inmunización Pasiva , Masculino , Mutación , Pruebas de Neutralización , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/genética , Sueroterapia para COVID-19
16.
Commun Biol ; 4(1): 476, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33875803

RESUMEN

CRISPR-based nucleic-acid detection is an emerging technology for molecular diagnostics. However, these methods generally require several hours and could cause amplification errors, due to the pre-amplification of target nucleic acids to enhance the detection sensitivity. Here, we developed a platform that allows "CRISPR-based amplification-free digital RNA detection (SATORI)", by combining CRISPR-Cas13-based RNA detection and microchamber-array technologies. SATORI detected single-stranded RNA targets with maximal sensitivity of ~10 fM in <5 min, with high specificity. Furthermore, the simultaneous use of multiple different guide RNAs enhanced the sensitivity, thereby enabling the detection of the SARS-CoV-2 N-gene RNA at ~5 fM levels. Therefore, we hope SATORI will serve as a powerful class of accurate and rapid diagnostics.


Asunto(s)
COVID-19/diagnóstico , Sistemas CRISPR-Cas , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/genética , ARN/genética , SARS-CoV-2/genética , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19/métodos , Humanos , ARN/metabolismo , ARN Viral/metabolismo , Reproducibilidad de los Resultados , SARS-CoV-2/fisiología , Sensibilidad y Especificidad
17.
iScience ; 24(5): 102428, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33880436

RESUMEN

Genetic differences are a primary reason for differences in the susceptibility and severity of COVID-19. As induced pluripotent stem (iPS) cells maintain the genetic information of the donor, they can be used to model individual differences in SARS-CoV-2 infection in vitro. We found that human iPS cells expressing the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) (ACE2-iPS cells) can be infected w SARS-CoV-2. In infected ACE2-iPS cells, the expression of SARS-CoV-2 nucleocapsid protein, budding of viral particles, and production of progeny virus, double membrane spherules, and double-membrane vesicles were confirmed. We performed SARS-CoV-2 infection experiments on ACE2-iPS/ embryonic stem (ES) cells from eight individuals. Male iPS/ES cells were more capable of producing the virus compared with female iPS/ES cells. These findings suggest that ACE2-iPS cells can not only reproduce individual differences in SARS-CoV-2 infection in vitro but also are a useful resource to clarify the causes of individual differences in COVID-19 due to genetic differences.

18.
Polymers (Basel) ; 13(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33435608

RESUMEN

Face masks have globally been accepted to be an effective protective tool to prevent bacterial and viral transmission, especially against indoor aerosol transmission. However, commercial face masks contain filters that are made of materials that are not capable of inactivating either SARS-CoV-2 or multidrug-resistant bacteria. Therefore, symptomatic and asymptomatic individuals can infect other people even if they wear them because some viable viral or bacterial loads can escape from the masks. Furthermore, viral or bacterial contact transmission can occur after touching the mask, which constitutes an increasing source of contaminated biological waste. Additionally, bacterial pathogens contribute to the SARS-CoV-2-mediated pneumonia disease complex, and their resistance to antibiotics in pneumonia treatment is increasing at an alarming rate. In this regard, herein, we report the development of a non-woven face mask filter fabricated with a biofunctional coating of benzalkonium chloride that is capable of inactivating more than 99% of SARS-CoV-2 particles in one minute of contact, and the life-threatening methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis (normalized antibacterial halos of 0.52 ± 0.04 and 0.72 ± 0.04, respectively). Nonetheless, despite the results obtained, further studies are needed to ensure the safety and correct use of this technology for the mass production and commercialization of this broad-spectrum antimicrobial face mask filter. Our novel protective non-woven face mask filter would be useful for many healthcare workers and researchers working in this urgent and challenging field.

19.
Microscopy (Oxf) ; 68(6): 450-456, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31722015

RESUMEN

Lassa virus (LASV), belonging to the family Arenaviridae, causes severe haemorrhagic manifestations and is associated with a high mortality rate in humans. Thus, it is classified as a biosafety level (BSL)-4 agent. Since countermeasures for LASV diseases are yet to be developed, it is important to elucidate the molecular mechanisms underlying the life cycle of the virus, including its viral and host cellular protein interactions. These underlying molecular mechanisms may serve as the key for developing novel therapeutic options. Lymphocytic choriomeningitis virus (LCMV), a close relative of LASV, is usually asymptomatic and is categorized as a BSL-2 agent. In the present study, we visualized the transport of viral matrix Z protein in LCMV-infected cells using live-cell imaging microscopy. We demonstrated that the transport of Z protein is mediated by polymerized microtubules. Interestingly, the transport of LASV Z protein showed characteristics similar to those of Z protein in LCMV-infected cells. The live-cell imaging system using LCMV provides an attractive surrogate measure for studying arenavirus matrix protein transport in BSL-2 laboratories. In addition, it could be also utilized to analyze the interactions between viral matrix proteins and the cellular cytoskeleton, as well as to evaluate the antiviral compounds that target the transport of viral matrix proteins.


Asunto(s)
Interacciones Microbiota-Huesped , Procesamiento de Imagen Asistido por Computador/métodos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Virus de la Coriomeningitis Linfocítica , Microtúbulos/metabolismo , Transporte Biológico , Células HEK293 , Humanos
20.
Microbiol Immunol ; 63(5): 164-171, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30997933

RESUMEN

Defective interfering (DI) influenza viruses carry a large deletion in a gene segment that interferes with the replication of infectious virus; thus, such viruses have potential for antiviral therapy. However, because DI viruses cannot replicate autonomously without the aid of an infectious helper virus, clonal DI virus stocks that are not contaminated with helper virus have not yet been generated. To overcome this problem, we used reverse genetics to generate a clonal DI virus with a PB2 DI gene, amplified the clonal DI virus using a cell line stably expressing the PB2 protein, and confirmed its ability to interfere with infectious virus replication in vitro. Thus, our approach is suitable for obtaining purely clonal DI viruses, will contribute to the understanding of DI virus interference mechanisms and can be used to develop DI virus-based antivirals.


Asunto(s)
Virus Defectuosos/genética , Virus de la Influenza A/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Replicación Viral/genética , Animales , Antivirales/uso terapéutico , Virus Defectuosos/fisiología , Perros , Células HEK293 , Humanos , Gripe Humana/tratamiento farmacológico , Células de Riñón Canino Madin Darby , Infecciones por Orthomyxoviridae/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...