Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 62(28): 7387-7399, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855507

RESUMEN

The realization of a high dynamic extinction ratio (ER) and optical modulation amplitude (OMA) while keeping the optical and radio-frequency (RF) signal losses low is a major issue for carrier-depletion Mach-Zehnder (MZ) silicon optical modulators. However, there is still room to improve modulator performance by applying the information gained from recent advanced testing technology to the modulator design. In this study, the extrinsic OMA (E-OMA) enhancement effect, which was discovered through the evaluation process and by revisiting the physics of the MZ interferometer (MZI), is investigated. First, we raise the issue of a periodic ripple observed on an MZI spectrum that has previously been overlooked but can affect modulator performance and attribute it to optical resonance between the multi-mode interferometers that compose an MZI. We show that, although having the effect of reducing the dynamic ER in the push-pull regime, as demonstrated experimentally, this resonance can take them beyond the realm of modulation efficiency and generate an E-OMA enhancement effect in the single-arm-drive regime without involving any optical and RF signal losses. By comparing two modulator structures that generate resonance internally, we successfully identify the factors that are responsible for increasing the E-OMA enhancement effect. We reveal that theoretically the OMA can easily be increased by 0.45 dB or more.

2.
Opt Express ; 19(3): 1713-27, 2011 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-21368985

RESUMEN

In this paper, we propose a novel mechanism for suppression of higher-order modes (HOMs), namely multiple resonant coupling, in all-solid photonic bandgap fibers (PBGFs) with effectively large core diameters. In an analogy to the well-known tight-binding theory in solid-state physics, multiple anti-resonant reflecting optical waveguide (ARROW) modes bound in designedly arranged defects in the cladding make up Bloch states and resultant photonic bands with a finite effective-index width, which contribute to the suppression of HOMs. In particular, contrary to the conventional method for the HOM suppression using the index-matching of the HOMs in the core of the PBGF and the defect mode arranged in the cladding, the proposed mechanism guarantees a broadband HOM suppression without a precise structural design. This effect is explained by the multiple resonant coupling, as well as an enhanced confinement loss mechanism which occurs near the condition satisfying the multiple resonant coupling. Moreover, we show that the proposed structure exhibits a lower bending loss characteristic when compared to the conventional all-solid PBGFs. The simultaneous realization of the single-mode operation and the low bending loss property is due to the novel cladding concept named as heterostructured cladding. The proposed structure also resolves the issue for the increased confinement loss property in the first-order photonic bandgap (PBG) at the same time.


Asunto(s)
Fibras Ópticas , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Fotones , Dispersión de Radiación
3.
Opt Express ; 17(9): 7615-29, 2009 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-19399140

RESUMEN

In this paper, detailed properties of bent solid-core photonic bandgap fibers (SC-PBGFs) are investigated. We propose an approximate equivalent straight waveguide (ESW) formulation for photonic bandgap (PBG) edges, which is convenient to see qualitatively which radiation (centripetal or centrifugal radiation) mainly occurs and the impact of bend losses for an operating wavelength. In particular, we show that cladding modes induced by bending cause several complete or incomplete leaky mode couplings with the core mode and the resultant loss peaks. Moreover, we show that the field distributions of the cladding modes are characterized by three distinct types for blue-edge, mid-gap, and red-edge wavelengths in the PBG, which is explained by considering the cladding Bloch states or resonant conditions without bending. Next, we investigate the structural dependence of the bend losses. In particular, we demonstrate the bend-loss dependence on the number of the cladding rings. Finally, by investigating the impacts of the order of PBG and the core structure on the bend losses, we discuss a tight-bending structure.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Tecnología de Fibra Óptica/métodos , Modelos Teóricos , Simulación por Computador , Diseño Asistido por Computadora , Módulo de Elasticidad , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estrés Mecánico
4.
Opt Express ; 15(7): 4268-80, 2007 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-19532671

RESUMEN

In this paper, we study the novel propagation properties of an improved triangular-type air-core photonic bandgap fiber (PBGF) structured with an anti-resonant silica core surround, through a full-vector modal solver based on the finite-element method (FEM). At first, to realize a single-mode operation over a wide wavelength range, the fiber whose core is constructed by removing 1 air-hole and expanded is proposed and structurally-optimized. In particular, the structural parameters for the fiber that prevent the narrow-band transmission due to the existence of the surface modes and enhance the confinement of the power in the air-core are presented. For the realization of an ultimate low loss transmission, a 7-unit-cell PBGF is analyzed and we show that the 7-unit-cell PBGF can achieve not only lower confinement loss than that of regular-type 7-unit-cell PBGF, but also lower power fraction in the silica-ring when compared with the regular 19-unit-cell PBGF with an anti-resonant core surround, exhibiting an effectively single-mode operation.

5.
Opt Express ; 14(6): 2404-12, 2006 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19503579

RESUMEN

We investigate photonic band-gap (PBG) profiles of a modified honeycomb lattice structure and we identify the structural parameters that possess the largest band-gap. By incorporating the identified profile into the cladding, the wavelength dependence of the dispersion properties and confinement losses of air-guiding modified honeycomb PBG fibers (PBGFs) is investigated through a full-vector modal solver based on finite element method. In particular, we find that broadband effectively singlemode operation from 1450 nm to 1850 nm can be achieved using a modified honeycomb PBGF with a defected core realized by removing 7 air holes.

6.
Opt Express ; 14(11): 4861-72, 2006 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19516644

RESUMEN

The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 mum, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

7.
Opt Express ; 14(16): 7342-52, 2006 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19529103

RESUMEN

The objective of the present investigation is to propose and theoretically demonstrate the effective suppression of higher-order modes in large-hollow-core photonic band gap fibers (PBGFs), mainly for low-loss data transmission platforms and/or high power delivery systems. The proposed design strategy is based on the index-matching mechanism of central air-core modes with defected outer core modes. By incorporating several air-cores in the cladding of the PBGF with 6-fold symmetry it is possible to resonantly couple the light corresponding to higher-order modes into the outer core, thus significantly increasing the leakage losses of the higher-order modes in comparison to the fundamental mode, thus making our proposed design to operate in an effectively single mode fashion with polarization independent propagation characteristics. The validation of the procedure is ensured with a detailed PBGF analysis based on an accurate finite element modal solver. Extensive numerical results show that the leakage losses of the higher-order modes can be enhanced in a level of at least 2 orders of magnitude in comparison to those of the fundamental mode. Our investigation is expected to remove an essential obstacle in the development of large-core single-mode hollow-core fibers, thus enabling them to surpass the attenuation of conventional fibers.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Modelos Teóricos , Simulación por Computador , Elasticidad , Diseño de Equipo , Luz , Dispersión de Radiación , Estrés Mecánico , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA