Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(46): 13574-13580, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38033893

RESUMEN

The regio- and enantio-selective dearomatization of phenols has been achieved by I(i)/I(iii) catalysis enabled fluorination. The process is highly para-selective, guiding the fluoride nucleophile to the distal C4 position of the substrate to generate fluorinated cyclohexadienones in an operationally simple manner. Extensive optimization has revealed key parameters that orchestrate enantioselectivity in this historically challenging transformation. A range of diversely substituted substrates are disclosed (20 examples, up to 92 : 8 e.r.) and the reaction displays efficiency that is competitive with the current state of the art in hydroxylation chemistry: this provides a preparative platform to enable OH to F bioisosterism to be explored. Finally, the utility of the products in accessing densely functionalized cyclic scaffolds with five contiguous stereocenters is disclosed together with crystallographic analyses to unveil fluorine-carbonyl non-covalent interactions.

2.
Int J Mol Sci ; 23(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35806419

RESUMEN

Nanoparticles (NPs) enhance soybean growth; however, their precise mechanism is not clearly understood. To develop a more effective method using NPs for the enhancement of soybean growth, fiber crosslinked with zinc oxide (ZnO) NPs was prepared. The solution of ZnO NPs with 200 nm promoted soybean growth at the concentration of 10 ppm, while fibers crosslinked with ZnO NPs promoted growth at a 1 ppm concentration. Soybeans grown on fiber cross-linked with ZnO NPs had higher Zn content in their roots than those grown in ZnO NPs solution. To study the positive mechanism of fiber crosslinked with ZnO NPs on soybean growth, a proteomic technique was used. Proteins categorized in photosynthesis and secondary metabolism accumulated more in soybeans grown on fiber crosslinked with ZnO NPs than in those grown in ZnO NPs solution. Furthermore, significantly accumulated proteins, which were NADPH oxidoreductase and tubulins, were confirmed using immunoblot analysis. The abundance of NADPH oxidoreductase increased in soybean by ZnO NPs application. These results suggest that fiber crosslinked with ZnO NPs enhances soybean growth through the increase of photosynthesis and secondary metabolism. Additionally, the accumulation of NADPH oxidoreductase might relate to the effect of auxin with fiber crosslinked with ZnO NPs on soybean growth.


Asunto(s)
Fabaceae , Nanopartículas , Óxido de Zinc , Fabaceae/metabolismo , NADP/metabolismo , Oxidorreductasas/metabolismo , Proteómica , Plantones/metabolismo , Glycine max/metabolismo , Zinc/metabolismo , Óxido de Zinc/química
3.
Plant Cell Physiol ; 62(1): 8-27, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33244607

RESUMEN

Bread wheat is a major crop that has long been the focus of basic and breeding research. Assembly of its genome has been difficult because of its large size and allohexaploid nature (AABBDD genome). Following the first reported assembly of the genome of the experimental strain Chinese Spring (CS), the 10+ Wheat Genomes Project was launched to produce multiple assemblies of worldwide modern cultivars. The only Asian cultivar in the project is Norin 61, a representative Japanese cultivar adapted to grow across a broad latitudinal range, mostly characterized by a wet climate and a short growing season. Here, we characterize the key aspects of its chromosome-scale genome assembly spanning 15 Gb with a raw scaffold N50 of 22 Mb. Analysis of the repetitive elements identified chromosomal regions unique to Norin 61 that encompass a tandem array of the pathogenesis-related 13 family. We report novel copy-number variations in the B homeolog of the florigen gene FT1/VRN3, pseudogenization of its D homeolog and the association of its A homeologous alleles with the spring/winter growth habit. Furthermore, the Norin 61 genome carries typical East Asian functional variants different from CS, ranging from a single nucleotide to multi-Mb scale. Examples of such variation are the Fhb1 locus, which confers Fusarium head-blight resistance, Ppd-D1a, which confers early flowering, Glu-D1f for Asian noodle quality and Rht-D1b, which introduced semi-dwarfism during the green revolution. The adoption of Norin 61 as a reference assembly for functional and evolutionary studies will enable comprehensive characterization of the underexploited Asian bread wheat diversity.


Asunto(s)
Resistencia a la Enfermedad/genética , Flores/crecimiento & desarrollo , Genes de Plantas/genética , Genoma de Planta/genética , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Citogenética , Asia Oriental , Flores/genética , Fusarium , Genes de Plantas/fisiología , Estudios de Asociación Genética , Variación Genética/genética , Variación Genética/fisiología , Genoma de Planta/fisiología , Genotipo , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Triticum/crecimiento & desarrollo , Triticum/inmunología , Triticum/fisiología
4.
Nature ; 588(7837): 277-283, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33239791

RESUMEN

Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.


Asunto(s)
Variación Genética , Genoma de Planta/genética , Genómica , Internacionalidad , Fitomejoramiento/métodos , Triticum/genética , Aclimatación/genética , Animales , Centrómero/genética , Centrómero/metabolismo , Mapeo Cromosómico , Clonación Molecular , Variaciones en el Número de Copia de ADN/genética , Elementos Transponibles de ADN/genética , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Genes de Plantas/genética , Introgresión Genética , Haplotipos , Insectos/patogenicidad , Proteínas NLR/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Poliploidía , Triticum/clasificación , Triticum/crecimiento & desarrollo
5.
Biochimie ; 157: 57-63, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30389513

RESUMEN

One of the sweetest proteins found in tropical fruits (with a threshold of 50 nM), thaumatin, is also used commercially as a sweetener. Our previous study successfully produced the sweetest thaumatin mutant (D21N), designated hyper-sweet thaumatin, which decreases the sweetness threshold to 31 nM. To investigate why the D21N mutant is sweeter than wild-type thaumatin, we compared the structure of the D21N mutant solved at a subatomic resolution of 0.93 Šwith that of wild-type thaumatin determined at 0.90 Å. Although the overall structure of the D21N mutant resembles that of wild-type thaumatin, our subatomic resolution analysis successfully assigned and discriminated the detailed atomic positions of side-chains at position 21. The relative B-factor value of the side-chain at position 21 in the D21N mutant was higher than that of wild-type thaumatin, hinting at a greater flexibility of side-chain at 21 in the hyper-sweet D21N mutant. Furthermore, alternative conformations of Lys19, which is hydrogen-bonded to Asp21 in wild-type, were found only in the D21N mutant. Subatomic resolution analysis revealed that flexible conformations at the sites adjacent to positions 19 and 21 play a crucial role in enhancing sweet potency and may serve to enhance the complementarity of electrostatic potentials for interaction with the sweet taste receptor.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de Plantas/química , Mutación Missense , Proteínas de Plantas/genética , Estructura Secundaria de Proteína , Relación Estructura-Actividad
6.
Plant J ; 96(6): 1148-1159, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30238531

RESUMEN

The reference genome sequence of wheat 'Chinese Spring' (CS) is now available (IWGSC RefSeq v1.0), but the core sequences defining the nucleolar organizer regions (NORs) have not been characterized. We estimated that the total copy number of the rDNA units in the wheat genome is 11 160, of which 30.5%, 60.9% and 8.6% are located on Nor-B1 (1B), Nor-B2 (6B) and other NORs, respectively. The total length of the NORs is estimated to be 100 Mb, corresponding to approximately 10% of the unassembled portion of the genome not represented in RefSeq v1.0. Four subtypes (S1-S4) of the rDNA units were identified based on differences within the 3' external transcribed spacer regions in Nor-B1 and Nor-B2, and quantitative PCR indicated locus-specific variation in rDNA subtype contents. Expression analyses of rDNA subtypes revealed that S1 was predominantly expressed and S2 weakly expressed, in contrast to the relative abundance of rDNA subtypes in the wheat genome. These results suggest a regulation mechanism of differential rDNA expression based on sequence differences. S3 expression increased in the ditelosomic lines Dt1BL and Dt6BL, suggesting that S3 is subjected to chromosome-mediated silencing. Structural differences were detected in the regions surrounding the NOR among homoeologous chromosomes of groups 1 and 6. The adjacent regions distal to the major NORs were expanded compared with their homoeologous counterparts, and the gene density of these expanded regions was relatively low. We provide evidence that these regions are likely to be important for autoregulation of the associated major NORs as well as silencing of minor NORs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Región Organizadora del Nucléolo/genética , ARN de Planta/genética , ARN Ribosómico/genética , Triticum/genética , Cromosomas de las Plantas/genética , Variaciones en el Número de Copia de ADN/genética , Sitios Genéticos/genética , Genoma de Planta/genética , Hibridación Fluorescente in Situ , Región Organizadora del Nucléolo/metabolismo , Reacción en Cadena de la Polimerasa , ARN de Planta/metabolismo , ARN Ribosómico/metabolismo , Triticum/metabolismo
7.
Genes Genet Syst ; 93(3): 111-118, 2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30089747

RESUMEN

In this study, we investigated the chromosome breakage caused by gametocidal (Gc) chromosome 3Ct and its interaction with the suppressor gene Igc1 (inhibitor of gametocidal gene 1) on wheat chromosome 3B. We demonstrated cytologically that patterns of 3Ct-induced chromosomal fragmentation in microspores differed from patterns observed for other Gc genes. Uninuclear microspores of the monosomic 3Ct addition line had high frequencies of micronuclei, possibly explaining its low fertility. Chromosome fragmentation was observed in prometaphase and metaphase of the first pollen mitosis in the monosomic 3Ct addition line. Patterns of chromosome fragmentation were different from those previously reported for Gc chromosomes 2S of Aegilops speltoides, 4Ssh of Ae. sharonensis and 2Ccy of Ae. cylindrica; many chromosome fragments were observed in prometaphase of the first pollen mitosis in the monosomic 3Ct addition plants. In anthers at the binuclear stage, many microspores at the uninuclear stage coexisted with normally developed microspores.


Asunto(s)
Polen/genética , Triticum/genética , Aegilops/genética , Rotura Cromosómica , Cromosomas de las Plantas , Genes de Plantas , Poaceae/genética , Polen/citología , Triticum/citología
8.
Sci Rep ; 6: 20255, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26837600

RESUMEN

Thaumatin is an intensely sweet-tasting protein that elicits sweet taste at a concentration of 50 nM, a value 100,000 times larger than that of sucrose on a molar basis. Here we attempted to produce a protein with enhanced sweetness by removing negative charges on the interacting side of thaumatin with the taste receptor. We obtained a D21N mutant which, with a threshold value 31 nM is much sweeter than wild type thaumatin and, together with the Y65R mutant of single chain monellin, one of the two sweetest proteins known so far. The complex model between the T1R2-T1R3 sweet receptor and thaumatin, derived from tethered docking in the framework of the wedge model, confirmed that each of the positively charged residues critical for sweetness is close to a receptor residue of opposite charge to yield optimal electrostatic interaction. Furthermore, the distance between D21 and its possible counterpart D433 (located on the T1R2 protomer of the receptor) is safely large to avoid electrostatic repulsion but, at the same time, amenable to a closer approach if D21 is mutated into the corresponding asparagine. These findings clearly confirm the importance of electrostatic potentials in the interaction of thaumatin with the sweet receptor.


Asunto(s)
Asparagina/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Zingiberales/metabolismo , Sitios de Unión , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutación , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica , Electricidad Estática , Gusto , Zingiberales/genética
9.
J Am Chem Soc ; 136(41): 14432-7, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25244161

RESUMEN

This article introduces a carbon electrode designed to achieve efficient enzymatic electrolysis by exploiting a hierarchical pore structure based on macropores for efficient mass transfer and mesopores for high enzyme loading. Magnesium oxide-templated mesoporous carbon (MgOC, mean pore diameter 38 nm) was used to increase the effective specific surface area for enzyme immobilization. MgOC particles were deposited on a current collector by an electrophoretic deposition method to generate micrometer-scale macropores to improve the mass transfer of glucose and electrolyte (buffer) ions. To create a glucose bioanode, the porous-carbon-modified electrode was further coated with a biocatalytic hydrogel composed of a conductive redox polymer, deglycosylated flavin adenine dinucleotide-dependent glucose dehydrogenase (d-FAD-GDH), and a cross-linker. Carbohydrate chains on the peripheral surfaces of the FAD-GDH molecules were removed by periodate oxidation before cross-linking. The current density for the oxidation of glucose was 100 mA cm(-2) at 25 °C and pH 7, with a hydrogel loading of 1.0 mg cm(-2). For the same hydrogel composition and loading, the current density on the MgOC-modified electrode was more than 30 times higher than that on a flat carbon electrode. On increasing the solution temperature to 45 °C, the catalytic current increased to 300 mA cm(-2), with a hydrogel loading of 1.6 mg cm(-2). Furthermore, the stability of the hydrogel electrode was improved by using the mesoporous carbon materials; more than 95% of the initial catalytic current remained after a 220-day storage test in 4 °C phosphate buffer, and 80% was observed after 7 days of continuous operation at 25 °C.


Asunto(s)
Carbono/química , Flavina-Adenina Dinucleótido/química , Glucosa 1-Deshidrogenasa/química , Glucosa/química , Carbono/metabolismo , Electrodos , Flavina-Adenina Dinucleótido/metabolismo , Glucosa/metabolismo , Glucosa 1-Deshidrogenasa/metabolismo , Estructura Molecular , Porosidad , Propiedades de Superficie
10.
Macromol Biosci ; 6(4): 293-300, 2006 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-16565944

RESUMEN

Cellulose gels were prepared from cellulose in lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) solution. When the cellulose concentration in the solution is above the one at which cellulose molecules overlap, cellulose gels were formed. While the gel prepared by the addition of water was turbid, the one prepared by the ion exchange was colorless, transparent, and optically anisotropic. In order to explain this gelation behavior of cellulose, small-angle X-ray scattering (SAXS) measurements of the cellulose solutions and the gels were performed. The SAXS profiles of the cellulose solutions and the gels suggested that the large-scale fluctuation of the molecular chain density in the solution can be the origin of the molecular aggregates formed in the gel. Furthermore, the differences in the structure of the gels at the macroscopic and the molecular level were discussed in terms of the phase separation and the molecular association.


Asunto(s)
Acetamidas/química , Celulosa/química , Geles , Cloruro de Litio/química , Dispersión de Radiación , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...