Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2105, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453897

RESUMEN

Photosynthesis fuels primary production at the base of marine food webs. Yet, in many surface ocean ecosystems, diel-driven primary production is tightly coupled to daily loss. This tight coupling raises the question: which top-down drivers predominate in maintaining persistently stable picocyanobacterial populations over longer time scales? Motivated by high-frequency surface water measurements taken in the North Pacific Subtropical Gyre (NPSG), we developed multitrophic models to investigate bottom-up and top-down mechanisms underlying the balanced control of Prochlorococcus populations. We find that incorporating photosynthetic growth with viral- and predator-induced mortality is sufficient to recapitulate daily oscillations of Prochlorococcus abundances with baseline community abundances. In doing so, we infer that grazers in this environment function as the predominant top-down factor despite high standing viral particle densities. The model-data fits also reveal the ecological relevance of light-dependent viral traits and non-canonical factors to cellular loss. Finally, we leverage sensitivity analyses to demonstrate how variation in life history traits across distinct oceanic contexts, including variation in viral adsorption and grazer clearance rates, can transform the quantitative and even qualitative importance of top-down controls in shaping Prochlorococcus population dynamics.


Asunto(s)
Ecosistema , Prochlorococcus , Océanos y Mares , Cadena Alimentaria , Dinámica Poblacional , Agua de Mar/microbiología , Océano Pacífico
2.
mSystems ; 8(5): e0043323, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37800938

RESUMEN

Microbiology conferences can be powerful places to build collaborations and exchange ideas, but for queer and transgender (trans) scientists, they can also become sources of alienation and isolation. Many conference organizers would like to create welcoming and inclusive events but feel ill-equipped to make this vision a reality, and a historical lack of representation of queer and trans folks in microbiology means we rarely occupy these key leadership roles ourselves. Looking more broadly, queer and trans scientists are systematically marginalized across scientific fields, leading to disparities in career outcomes, professional networks, and opportunities, as well as the loss of unique scientific perspectives at all levels. For queer and trans folks with multiple, intersecting, marginalized identities, these barriers often become even more severe. Here, we draw from our experiences as early-career microbiologists to provide concrete, practical advice to help conference organizers across research communities design inclusive, safe, and welcoming conferences, where queer and trans scientists can flourish.


Asunto(s)
Minorías Sexuales y de Género , Personas Transgénero , Transexualidad , Humanos , Identidad de Género
3.
mSystems ; 8(2): e0109522, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36920198

RESUMEN

Nutrient availability can significantly influence microbial genomic and proteomic streamlining, for example, by selecting for lower nitrogen to carbon ratios. Oligotrophic open ocean microbes have streamlined genomic nitrogen requirements relative to those of their counterparts in nutrient-rich coastal waters. However, steep gradients in nutrient availability occur at meter-level, and even micron-level, spatial scales. It is unclear whether such gradients also structure genomic and proteomic stoichiometry. Focusing on the eastern tropical North Pacific oxygen minimum zone (OMZ), we use comparative metagenomics to examine how nitrogen availability shapes microbial and viral genome properties along the vertical gradient across the OMZ and between two size fractions, distinguishing free-living microbes versus particle-associated microbes. We find a substantial increase in the nitrogen content of encoded proteins in particle-associated over free-living bacteria and archaea across nitrogen availability regimes over depth. Within each size fraction, we find that bacterial and viral genomic nitrogen tends to increase with increasing nitrate concentrations with depth. In contrast to cellular genes, the nitrogen content of virus proteins does not differ between size fractions. We identified arginine as a key amino acid in the modulation of the C:N ratios of core genes for bacteria, archaea, and viruses. Functional analysis reveals that particle-associated bacterial metagenomes are enriched for genes that are involved in arginine metabolism and organic nitrogen compound catabolism. Our results are consistent with nitrogen streamlining in both cellular and viral genomes on spatial scales of meters to microns. These effects are similar in magnitude to those previously reported across scales of thousands of kilometers. IMPORTANCE The genomes of marine microbes can be shaped by nutrient cycles, with ocean-scale gradients in nitrogen availability being known to influence microbial amino acid usage. It is unclear, however, how genomic properties are shaped by nutrient changes over much smaller spatial scales, for example, along the vertical transition into oxygen minimum zones (OMZs) or from the exterior to the interior of detrital particles. Here, we measure protein nitrogen usage by marine bacteria, archaea, and viruses by using metagenomes from the nitracline of the eastern tropical North Pacific OMZ, including both particle-associated and nonassociated biomass. Our results show higher genomic and proteomic nitrogen content in particle-associated microbes and at depths with higher nitrogen availability for cellular and viral genomes. This discovery suggests that stoichiometry influences microbial and viral evolution across multiple scales, including the micrometer to millimeter scale associated with particle-associated versus free-living lifestyles.


Asunto(s)
Proteoma , Agua de Mar , Agua de Mar/química , Proteoma/genética , Proteómica , Oxígeno/análisis , Nitrógeno/metabolismo , Bacterias/genética , Archaea/genética , Genoma Viral/genética , Aminoácidos/genética
4.
Nat Ecol Evol ; 6(2): 218-229, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35058612

RESUMEN

Complex assemblages of microbes in the surface ocean are responsible for approximately half of global carbon fixation. The persistence of high taxonomic diversity despite competition for a small suite of relatively homogeneously distributed nutrients, that is, 'the paradox of the plankton', represents a long-standing challenge for ecological theory. Here we find evidence consistent with temporal niche partitioning of nitrogen assimilation processes over a diel cycle in the North Pacific Subtropical Gyre. We jointly analysed transcript abundances, lipids and metabolites and discovered that a small number of diel archetypes can explain pervasive periodic dynamics. Metabolic pathway analysis of identified diel signals revealed asynchronous timing in the transcription of nitrogen uptake and assimilation genes among different microbial groups-cyanobacteria, heterotrophic bacteria and eukaryotes. This temporal niche partitioning of nitrogen uptake emerged despite synchronous transcription of photosynthesis and central carbon metabolism genes and associated macromolecular abundances. Temporal niche partitioning may be a mechanism by which microorganisms in the open ocean mitigate competition for scarce resources, supporting community coexistence.


Asunto(s)
Cianobacterias , Microbiota , Cianobacterias/genética , Nitrógeno/metabolismo , Plancton/genética , Agua de Mar
5.
ISME J ; 15(2): 520-533, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33033374

RESUMEN

Sunlight is the most important environmental control on diel fluctuations in phytoplankton activity, and understanding diel microbial processes is essential to the study of oceanic biogeochemical cycles. Yet, little is known about the in situ temporal dynamics of phytoplankton metabolic activities and their coordination across different populations. We investigated diel orchestration of phytoplankton activity in photosynthesis, photoacclimation, and photoprotection by analyzing pigment and quinone distributions in combination with metatranscriptomes in surface waters of the North Pacific Subtropical Gyre (NPSG). We found diel cycles in pigment abundances resulting from the balance of their synthesis and consumption. These dynamics suggest that night represents a metabolic recovery phase, refilling cellular pigment stores, while photosystems are remodeled towards photoprotection during daytime. Transcript levels of genes involved in photosynthesis and pigment metabolism had synchronized diel expression patterns among all taxa, reflecting the driving force light imparts upon photosynthetic organisms in the ocean, while other environmental factors drive niche differentiation. For instance, observed decoupling of diel oscillations in transcripts and related pigments indicates that pigment abundances are modulated by environmental factors extending beyond gene expression/regulation reinforcing the need to combine metatranscriptomics with proteomics and metabolomics to fully understand the timing of these critical processes in situ.


Asunto(s)
Fitoplancton , Agua de Mar , Regulación de la Expresión Génica , Océanos y Mares
6.
Front Genet ; 11: 310, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373155

RESUMEN

Time-series can provide critical insights into the structure and function of microbial communities. The analysis of temporal data warrants statistical considerations, distinct from comparative microbiome studies, to address ecological questions. This primer identifies unique challenges and approaches for analyzing microbiome time-series. In doing so, we focus on (1) identifying compositionally similar samples, (2) inferring putative interactions among populations, and (3) detecting periodic signals. We connect theory, code and data via a series of hands-on modules with a motivating biological question centered on marine microbial ecology. The topics of the modules include characterizing shifts in community structure and activity, identifying expression levels with a diel periodic signal, and identifying putative interactions within a complex community. Modules are presented as self-contained, open-access, interactive tutorials in R and Matlab. Throughout, we highlight statistical considerations for dealing with autocorrelated and compositional data, with an eye to improving the robustness of inferences from microbiome time-series. In doing so, we hope that this primer helps to broaden the use of time-series analytic methods within the microbial ecology research community.

7.
mSystems ; 3(6)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30443603

RESUMEN

Marine and freshwater microbial communities are phylogenetically distinct, and transitions between habitat types are thought to be infrequent. We compared the phylogenetic diversity of marine and freshwater microorganisms and identified specific lineages exhibiting notably high or low similarity between marine and freshwater ecosystems using a meta-analysis of 16S rRNA gene tag-sequencing data sets. As expected, marine and freshwater microbial communities differed in the relative abundance of major phyla and contained habitat-specific lineages. At the same time, and contrary to expectations, many shared taxa were observed in both habitats. Based on several metrics, we found that Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, and Betaproteobacteria contained the highest number of closely related marine and freshwater sequences, suggesting comparatively recent habitat transitions in these groups. Using the abundant alphaproteobacterial group SAR11 as an example, we found evidence that new lineages, beyond the recognized LD12 clade, are detected in freshwater at low but reproducible abundances; this evidence extends beyond the 16S rRNA locus to core genes throughout the genome. Our results suggest that shared taxa are numerous, but tend to occur sporadically and at low relative abundance in one habitat type, leading to an underestimation of transition frequency between marine and freshwater habitats. Rare taxa with abundances near or below detection, including lineages that appear to have crossed the salty divide relatively recently, may possess adaptations enabling them to exploit opportunities for niche expansion when environments are disturbed or conditions change. IMPORTANCE The distribution of microbial diversity across environments yields insight into processes that create and maintain this diversity as well as potential to infer how communities will respond to future environmental changes. We integrated data sets from dozens of freshwater lake and marine samples to compare diversity across open water habitats differing in salinity. Our novel combination of sequence-based approaches revealed lineages that likely experienced a recent transition across habitat types. These taxa are promising targets for studying physiological constraints on salinity tolerance. Our findings contribute to understanding the ecological and evolutionary controls on microbial distributions, and open up new questions regarding the plasticity and adaptability of particular lineages.

8.
Anal Chem ; 89(21): 11498-11504, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29016104

RESUMEN

We present an analytical strategy, dimethylation-deuteration and oxygen-exchange IPTL (diDO-IPTL), for high-precision, broad-coverage quantitative proteomics. The diDO-IPTL approach combines two advances in isobaric peptide terminal labeling (IPTL) methodology: first, a one-pot chemical labeling strategy for attaching isotopic tags to both the N- and C-termini of tryptic peptides, and second, a search engine (based on the Morpheus algorithm) optimized for identification and quantification of twinned peaks from peptide fragment ions in MS2 spectra. The diDO-IPTL labeling chemistry uses only high-purity, relatively inexpensive isotopic reagents (18O water and deuterated formaldehyde) and requires no postlabeling cleanup or isotopic impurity corrections. This strategy produces proteome-scale relative quantification results with high accuracy and precision, suitable for the detection of small protein abundance variations between complex biological samples. In a two-proteome mixture experiment, diDO-IPTL quantification discriminates 1.5-fold changes in abundance of over 1000 proteins with 88% accuracy. The diDO-IPTL methodology is a high-precision, economical approach to quantitative proteomics that is applicable to a wide variety of sample types.


Asunto(s)
Deuterio/química , Oxígeno/química , Péptidos/química , Péptidos/metabolismo , Proteómica/métodos , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Metilación , Coloración y Etiquetado , Tripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...