Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Planta ; 253(1): 13, 2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389109

RESUMEN

MAIN CONCLUSION: Three types of the glandular trichomes are developed on the flowers and leaves of Millingtonia hortensis. Morphology, cell ultrastructure and content of the volatile compounds are specific to each trichome type. The aim of this study was to characterize the structural and histochemical features of the glandular trichomes (GTs) of two types localized on the different flower parts and leaves in Millingtonia hortensis, as well as to identify the composition of the internal pool of metabolites. The peltate GTs are most common; they are founded on peduncle, calyx, ovary, and leaves. GTs consist of 12-24-cell disk-shaped head and a single-celled neck. The capitate GTs are located on corolla tube and have four to eight-cell head, single-celled neck and a wide multicellular stalk. A series of histochemical reactions and fluorescent microscopy revealed the various substances in the chemical composition of GTs. Acid polysaccharides are predominately identified in the capitate trichomes of the corolla tube and peltate trichomes of calyx, terpenes present in larger quantity in the trichomes of the corolla tube and ovary, whilst phenolic substances prevail in the trichomes of the calyx and ovary. GTs of each type are characterized by specific ultrastructural traits. Smooth endoplasmic reticulum (SER) and leucoplasts prevail in the peltate trichomes of peduncle, calyx and ovary; Golgi apparatus is the common organelle in the capitate trichomes of the corolla tube and peltate trichomes of calyx; the huge aggregates of the RER cisterns there are in cytoplasm of all leaf trichomes. Synthesized secretion accumulates in the subcuticular cavity of all GTs except the leaf peltate trichomes. In the trichomes of the leaves secretion is stored in the thick upper cell wall with the wide cutinized layer. For the first time content of the internal pool of metabolites from the flowers and leaves was identified by GC-MS. Seventeen compounds, including alcohols, fatty acid derivatives, monoterpenes, sesquiterpenes, and benzenoids were identified. 1-octen 3-ol, 3-carene, methyl salicylate, p-hydroxybenzeneethanol and 1-hydroxy-2,4-di-tertbutyl-benzene were the main compounds of the flower scent. We consider GTs of the reproductive organs in M. hortensis synthesizing acid polysaccharides and volatile compounds as secretory structures attracting of pollinators, whereas the leaf peltate trichomes accumulating predominately non-volatile phenols, protect young vegetative shoots against small herbivorous insects and pathogens.


Asunto(s)
Bignoniaceae , Flores , Hojas de la Planta , Tricomas , Flores/química , Flores/ultraestructura , Hojas de la Planta/química , Hojas de la Planta/ultraestructura , Tricomas/química , Tricomas/ultraestructura
2.
Protoplasma ; 256(3): 789-803, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30604244

RESUMEN

Two types of glandular tichomes (GTs) develop on the leaves in three Doronicum species. The purpose of the work was to establish common and distinctive morphological, anatomical, histochemical, and ultrustructural features of the trichomes. It turned out that differences between types of trichomes are more significant than interspecific ones. For each Doronicum species, differences between GTs of two types include the dimensions, intensity of coloration by histochemical dyes, as well as ultrastructural features of the cells. The GTs of the first type are higher than GTs of the second type. Two to three upper cell layers of the first trichomes develop histochemical staining, whereas in the second ones, only apical cells give a positive histochemical reaction. In all trichomes, polysaccharides, polyphenols, and terpenoids are detected. In the GTs of the first type, polysaccharides are synthesized in larger quantity; in the GTs of the second type, synthesis of the secondary metabolites predominates. Main ultrastructural features of the GTs of the first type include proliferation of RER and an activity of Golgi apparatus denoting the synthesis of enzymes and pectin; however, development of SER, diversiform leucoplasts with reticular sheaths, and chloroplasts with peripheral plastid reticulum also demonstrate the synthesis of lipid substances. The ultrastructural characteristics of the second type GTs indicate the primary synthesis of lipid components. Secretion is localized in a periplasmic space of the upper cell layers. The secretory products pass through the cell wall, accumulate in the subcuticular cavity, and rupture it.


Asunto(s)
Asteraceae/anatomía & histología , Asteraceae/ultraestructura , Hojas de la Planta/anatomía & histología , Hojas de la Planta/ultraestructura , Tricomas/anatomía & histología , Tricomas/ultraestructura , Asteraceae/citología , Pared Celular/ultraestructura , Hojas de la Planta/citología , Especificidad de la Especie , Tricomas/citología
3.
Planta ; 244(3): 737-52, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27150548

RESUMEN

MAIN CONCLUSION: The glandular trichomes are developed on the aerial organs of Tussilago farfara ; they produce phenols and terpenoids. Smooth endoplasmic reticulum and leucoplasts are the main organelles of the trichome secretory cells. The aim of this study was to characterise the morphology, anatomy, histochemistry and ultrastructure of the trichomes in Tussilago farfara as well as to identify composition of the secretory products. Structure of trichomes located on the peduncles, bracts, phyllaries, and leaves were studied by light and electron microscopy. The capitate glandular trichomes consist of a multicellular head and a biseriate long stalk. Histochemical tests and fluorescence microscopy reveal phenols and terpenoids in the head cells. During secretory stage, the head cells contain smooth and rough endoplasmic reticulum, Golgi apparatus, diversiform leucoplasts with opaque contents in lamellae, chloroplasts, mitochondria, and microbodies. In the capitate glandular trichomes of T. farfara subcuticular cavity is absent, unlike glandular trichomes in other Asteraceae species. For the first time, content of metabolites in the different vegetative and reproductive organs as well as in the isolated capitate glandular trichomes was identified by GC-MS. Forty-five compounds, including organic acids, sugars, polyols, phenolics, and terpenoids were identified. It appeared that metabolite content in the methanol extracts from peduncles, bracts and phyllaries is biochemically analogous, and similar to the metabolites from leaves, in which photosynthesis happens. At the same time, the metabolites from trichome extracts essentially differ and refer to the above-mentioned secondary substances. The study has shown that the practical value of the aerial organs of coltsfoot is provided with flavonoids produced in the capitate glandular trichomes.


Asunto(s)
Tricomas/ultraestructura , Tussilago/ultraestructura , Metaboloma , Análisis Multivariante , Tricomas/metabolismo , Tussilago/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...