Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38788714

RESUMEN

The salamander limb correctly regenerates missing limb segments because connective tissue cells have segment-specific identities, termed "positional information". How positional information is molecularly encoded at the chromatin level has been unknown. Here, we performed genome-wide chromatin profiling in mature and regenerating axolotl limb connective tissue cells. We find segment-specific levels of histone H3K27me3 as the major positional mark, especially at limb homeoprotein gene loci but not their upstream regulators, constituting an intrinsic segment information code. During regeneration, regeneration-specific regulatory elements became active prior to the re-appearance of developmental regulatory elements. In the hand, the permissive chromatin state of the homeoprotein gene HoxA13 engages with the regeneration program bypassing the upper limb program. Comparison of regeneration regulatory elements with those found in other regenerative animals identified a core shared set of transcription factors, supporting an ancient, conserved regeneration program.

2.
J Biol Chem ; 299(12): 105459, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977222

RESUMEN

The collagen IVα345 (Col-IVα345) scaffold, the major constituent of the glomerular basement membrane (GBM), is a critical component of the kidney glomerular filtration barrier. In Alport syndrome, affecting millions of people worldwide, over two thousand genetic variants occur in the COL4A3, COL4A4, and COL4A5 genes that encode the Col-IVα345 scaffold. Variants cause loss of scaffold, a suprastructure that tethers macromolecules, from the GBM or assembly of a defective scaffold, causing hematuria in nearly all cases, proteinuria, and often progressive kidney failure. How these variants cause proteinuria remains an enigma. In a companion paper, we found that the evolutionary emergence of the COL4A3, COL4A4, COL4A5, and COL4A6 genes coincided with kidney emergence in hagfish and shark and that the COL4A3 and COL4A4 were lost in amphibians. These findings opened an experimental window to gain insights into functionality of the Col-IVα345 scaffold. Here, using tissue staining, biochemical analysis and TEM, we characterized the scaffold chain arrangements and the morphology of the GBM of hagfish, shark, frog, and salamander. We found that α4 and α5 chains in shark GBM and α1 and α5 chains in amphibian GBM are spatially separated. Scaffolds are distinct from one another and from the mammalian Col-IVα345 scaffold, and the GBM morphologies are distinct. Our findings revealed that the evolutionary emergence of the Col-IVα345 scaffold enabled the genesis of a compact GBM that functions as an ultrafilter. Findings shed light on the conundrum, defined decades ago, whether the GBM or slit diaphragm is the primary filter.


Asunto(s)
Colágeno Tipo IV , Membrana Basal Glomerular , Mamíferos , Animales , Anuros , Colágeno Tipo IV/clasificación , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Membrana Basal Glomerular/química , Membrana Basal Glomerular/metabolismo , Membrana Basal Glomerular/fisiología , Anguila Babosa , Mamíferos/genética , Mamíferos/metabolismo , Mamíferos/fisiología , Tiburones , Especificidad de la Especie , Urodelos
3.
bioRxiv ; 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37905027

RESUMEN

Collagen IV is a primordial component of basement membranes, a specialized form of extracellular matrix that enabled multi-cellular epithelial tissues. In mammals, collagen IV assembles from a family of six α-chains (α1 to α6), encoded by six genes (COL4A1 to COL4A6), into three distinct scaffolds: the α121, the α345 and a mixed scaffold containing both α121 and α565. The six mammalian COL4A genes occur in pairs that occur in a head-to-head arrangement on three distinct chromosomes. In Alport syndrome, variants in the COL4A3, 4 or 5 genes cause either loss or defective assembly of the collagen IV α345 scaffold which results in a dysfunctional glomerular basement membrane, proteinuria and progression to renal failure in millions of people worldwide. Here, we determine the evolutionary emergence and diversification of the COL4A genes using comparative genomics and biochemical analyses. Using syntenic relationships to genes closely linked to the COL4A genes, we determine that the COL4A3 and COL4A4 gene pair appeared in cyclostomes (hagfish and lampreys) while the COL4A5 and COL4A6 gene pair emerged in gnathostomes, jawed vertebrates. The more basal chordate species, lancelets and tunicates, do not have discrete kidneys and have a single COL4A gene pair, though often with single isolated COL4 genes similar to those found in C elegans . Remarkably, while the six COL4A genes are conserved in vertebrates, amphibians have lost the COL4A3 and COL4A4 genes. Our findings of the evolutionary emergence of these genes, together with the amphibian double-knockout, opens an experimental window to gain insights into functionality of the Col IV α345 scaffold.

4.
Methods Mol Biol ; 2562: 369-387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36272088

RESUMEN

Salamanders have served as an excellent model for developmental and tissue regeneration studies. While transgenic approaches are available for various salamander species, their long generation time and expensive maintenance have driven the development of alternative gene delivery methods for functional studies. We have previously developed pseudotyped baculovirus (BV) as a tool for gene delivery in the axolotl (Oliveira et al. Dev Biol 433(2):262-275, 2018). Since its initial conception, we have refined our protocol of BV production and usage in salamander models. In this chapter, we describe a detailed and versatile protocol for BV-mediated transduction in urodeles.


Asunto(s)
Ambystoma mexicanum , Baculoviridae , Animales , Ambystoma mexicanum/genética , Baculoviridae/genética , Animales Modificados Genéticamente , Urodelos
5.
Front Genet ; 13: 1036641, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299593

RESUMEN

Regeneration of a complex appendage structure such as limb requires upstream and downstream coordination of multiple types of cells. Given type of cell may sit at higher upstream position to control the activities of other cells. Muscles are one of the major cell masses in limbs. However, the subtle functional relationship between muscle and other cells in vertebrate complex tissue regeneration are still not well established. Here, we use Pax7 mutant axolotls, in which the limb muscle is developmentally lost, to investigate limb regeneration in the absence of skeletal muscle. We find that the pattern of regenerated limbs is relative normal in Pax7 mutants compared to the controls, but the joint is malformed in the Pax7 mutants. Lack of muscles do not affect the early regeneration responses, specifically the recruitment of macrophages to the wound, as well as the proliferation of fibroblasts, another major population in limbs. Furthermore, using single cell RNA-sequencing, we show that, other than muscle lineage that is mostly missing in Pax7 mutants, the composition and the status of other cell types in completely regenerated limbs of Pax7 mutants are similar to that in the controls. Our study reveals skeletal muscle is barely required for the guidance of other cells, as well the patterning in complex tissue regeneration in axolotls, and provides refined views of the roles of muscle cell in vertebrate appendage regeneration.

6.
Dev Growth Differ ; 64(5): 243-253, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35581155

RESUMEN

Investigating cell lineage requires genetic tools that label cells in a temporal and tissue-specific manner. The bacteriophage-derived Cre-ERT2 /loxP system has been developed as a genetic tool for lineage tracing in many organisms. We recently reported a stable transgenic Xenopus line with a Cre-ERT2 /loxP system driven by the mouse Prrx1 (mPrrx1) enhancer to trace limb fibroblasts during the regeneration process (Prrx1:CreER line). Here we describe the detailed technological development and characterization of such line. Transgenic lines carrying a CAG promoter-driven Cre-ERT2 /loxP system showed conditional labeling of muscle, epidermal, and interstitial cells in both the tadpole tail and the froglet leg upon 4-hydroxytamoxifen (4OHT) treatment. We further improved the labeling efficiency in the Prrx1:CreER lines from 12.0% to 32.9% using the optimized 4OHT treatment regime. Careful histological examination showed that Prrx1:CreER lines also sparsely labeled cells in the brain, spinal cord, head dermis, and fibroblasts in the tail. This work provides the first demonstration of conditional, tissue-specific cell labeling with the Cre-ERT2 /loxP system in stable transgenic Xenopus lines.


Asunto(s)
Integrasas , Animales , Animales Modificados Genéticamente , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Xenopus laevis/genética , Xenopus laevis/metabolismo
7.
Nat Methods ; 19(5): 613-619, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35545715

RESUMEN

Light-sheet microscopy has emerged as the preferred means for high-throughput volumetric imaging of cleared tissues. However, there is a need for a flexible system that can address imaging applications with varied requirements in terms of resolution, sample size, tissue-clearing protocol, and transparent sample-holder material. Here, we present a 'hybrid' system that combines a unique non-orthogonal dual-objective and conventional (orthogonal) open-top light-sheet (OTLS) architecture for versatile multi-scale volumetric imaging. We demonstrate efficient screening and targeted sub-micrometer imaging of sparse axons within an intact, cleared mouse brain. The same system enables high-throughput automated imaging of multiple specimens, as spotlighted by a quantitative multi-scale analysis of brain metastases. Compared with existing academic and commercial light-sheet microscopy systems, our hybrid OTLS system provides a unique combination of versatility and performance necessary to satisfy the diverse requirements of a growing number of cleared-tissue imaging applications.


Asunto(s)
Microscopía , Animales , Ratones , Microscopía/métodos
8.
Dev Dyn ; 251(6): 942-956, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33949035

RESUMEN

The ability to generate transgenic animals sparked a wave of research committed to implementing such technology in a wide variety of model organisms. Building a solid base of ubiquitous and tissue-specific reporter lines has set the stage for later interrogations of individual cells or genetic elements. Compared to other widely used model organisms such as mice, zebrafish and fruit flies, there are only a few transgenic lines available in the laboratory axolotl (Ambystoma mexicanum), although their number is steadily expanding. In this review, we discuss a brief history of the transgenic methodologies in axolotl and their advantages and disadvantages. Next, we discuss available transgenic lines and insights we have been able to glean from them. Finally, we list challenges when developing transgenic axolotl, and where further work is needed in order to improve their standing as both a developmental and regenerative model.


Asunto(s)
Ambystoma mexicanum , Pez Cebra , Animales , Animales Modificados Genéticamente , Ratones
9.
Dev Dyn ; 251(6): 913-921, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33896069

RESUMEN

The laboratory axolotl (Ambystoma mexicanum) is widely used in biological research. Recent advancements in genetic and molecular toolkits are greatly accelerating the work using axolotl, especially in the area of tissue regeneration. At this juncture, there is a critical need to establish gene and transgenic nomenclature to ensure uniformity in axolotl research. Here, we propose guidelines for genetic nomenclature when working with the axolotl.


Asunto(s)
Ambystoma mexicanum , Cicatrización de Heridas , Ambystoma mexicanum/genética , Animales , Animales Modificados Genéticamente
10.
Dev Cell ; 56(10): 1541-1551.e6, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34004152

RESUMEN

Limb regeneration, while observed lifelong in salamanders, is restricted in post-metamorphic Xenopus laevis frogs. Whether this loss is due to systemic factors or an intrinsic incapability of cells to form competent stem cells has been unclear. Here, we use genetic fate mapping to establish that connective tissue (CT) cells form the post-metamorphic frog blastema, as in the case of axolotls. Using heterochronic transplantation into the limb bud and single-cell transcriptomic profiling, we show that axolotl CT cells dedifferentiate and integrate to form lineages, including cartilage. In contrast, frog blastema CT cells do not fully re-express the limb bud progenitor program, even when transplanted into the limb bud. Correspondingly, transplanted cells contribute to extraskeletal CT, but not to the developing cartilage. Furthermore, using single-cell RNA-seq analysis we find that embryonic and adult frog cartilage differentiation programs are molecularly distinct. This work defines intrinsic restrictions in CT dedifferentiation as a limitation in adult regeneration.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , Regeneración/fisiología , Ambystoma mexicanum , Animales , Tipificación del Cuerpo , Cartílago/citología , Reprogramación Celular , Células del Tejido Conectivo/citología , Dermis/citología , Embrión no Mamífero/citología , Larva , Xenopus laevis/embriología
11.
Sci Adv ; 6(22): eaba0365, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32523996

RESUMEN

Tissue clearing combined with deep imaging has emerged as a powerful alternative to classical histological techniques. Whereas current techniques have been optimized for imaging selected nonpigmented organs such as the mammalian brain, natural pigmentation remains challenging for most other biological specimens of larger volume. We have developed a fast DEpigmEntation-Plus-Clearing method (DEEP-Clear) that is easily incorporated in existing workflows and combines whole system labeling with a spectrum of detection techniques, ranging from immunohistochemistry to RNA in situ hybridization, labeling of proliferative cells (EdU labeling) and visualization of transgenic markers. With light-sheet imaging of whole animals and detailed confocal studies on pigmented organs, we provide unprecedented insight into eyes, whole nervous systems, and subcellular structures in animal models ranging from worms and squids to axolotls and zebrafish. DEEP-Clear thus paves the way for the exploration of species-rich clades and developmental stages that are largely inaccessible by regular imaging approaches.

12.
Biol Open ; 8(7)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31278164

RESUMEN

The heterogeneous properties of dermal cell populations have been posited to contribute toward fibrotic, imperfect wound healing in mammals. Here we characterize an adult population of dermal fibroblasts that maintain an active Prrx1 enhancer which originally marked mesenchymal limb progenitors. In contrast to their abundance in limb development, postnatal Prrx1 enhancer-positive cells (Prrx1enh+) make up a small subset of adult dermal cells (∼0.2%) and reside mainly within dermal perivascular and hair follicle niches. Lineage tracing of adult Prrx1enh+ cells shows that they remain in their niches and in small numbers over a long period of time. Upon injury however, Prrx1enh+ cells readily migrate into the wound bed and amplify, on average, 16-fold beyond their uninjured numbers. Additionally, following wounding dermal Prrx1enh+ cells are found out of their dermal niches and contribute to subcutaneous tissue. Postnatal Prrx1enh+ cells are uniquely injury-responsive despite being a meager minority in the adult skin.

13.
Nat Protoc ; 14(8): 2597, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30696984

RESUMEN

In the version of this protocol originally published, the recipe for CAS9 buffer was incorrectly identified as a recipe for sodium acetate solution, and vice versa. These errors have been corrected in the PDF and HTML versions of the paper.

14.
Development ; 146(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30665888

RESUMEN

Turbidity and opaqueness are inherent properties of tissues that limit the capacity to acquire microscopic images through large tissues. Creating a uniform refractive index, known as tissue clearing, overcomes most of these issues. These methods have enabled researchers to image large and complex 3D structures with unprecedented depth and resolution. However, tissue clearing has been adopted to a limited extent due to a combination of cost, time, complexity of existing methods and potential negative impact on fluorescence signal. Here, we describe 2Eci (2nd generation ethyl cinnamate-based clearing), which can be used to clear a wide range of tissues in several species, including human organoids, Drosophila melanogaster, zebrafish, axolotl and Xenopus laevis, in as little as 1-5 days, while preserving a broad range of fluorescent proteins, including GFP, mCherry, Brainbow and Alexa-conjugated fluorophores. Ethyl cinnamate is non-toxic and can easily be used in multi-user microscope facilities. This method opens up tissue clearing to a much broader group of researchers due to its ease of use, the non-toxic nature of ethyl cinnamate and broad applicability.


Asunto(s)
Cinamatos/química , Colorantes Fluorescentes/química , Imagenología Tridimensional/métodos , Organoides/citología , Ambystoma mexicanum , Animales , Drosophila melanogaster , Humanos , Microscopía Fluorescente , Xenopus laevis , Pez Cebra
15.
Nat Protoc ; 13(12): 2908-2943, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30429597

RESUMEN

Genomic manipulation is essential to the use of model organisms to understand development, regeneration and adult physiology. The axolotl (Ambystoma mexicanum), a type of salamander, exhibits an unparalleled regenerative capability in a spectrum of complex tissues and organs, and therefore serves as a powerful animal model for dissecting mechanisms of regeneration. We describe here an optimized stepwise protocol to create genetically modified axolotls using the CRISPR-Cas9 system. The protocol, which takes 7-8 weeks to complete, describes generation of targeted gene knockouts and knock-ins and includes site-specific integration of large targeting constructs. The direct use of purified CAS9-NLS (CAS9 containing a C-terminal nuclear localization signal) protein allows the prompt formation of guide RNA (gRNA)-CAS9-NLS ribonucleoprotein (RNP) complexes, which accelerates the creation of double-strand breaks (DSBs) at targeted genomic loci in single-cell-stage axolotl eggs. With this protocol, a substantial number of F0 individuals harboring a homozygous-type frameshift mutation can be obtained, allowing phenotype analysis in this generation. In the presence of targeting constructs, insertions of exogenous genes into targeted axolotl genomic loci can be achieved at efficiencies of up to 15% in a non-homologous end joining (NHEJ) manner. Our protocol bypasses the long generation time of axolotls and allows direct functional analysis in F0 genetically manipulated axolotls. This protocol can be potentially applied to other animal models, especially to organisms with a well-characterized transcriptome but lacking a well-characterized genome.


Asunto(s)
Ambystoma mexicanum/genética , Sistemas CRISPR-Cas , Edición Génica/métodos , Técnicas de Sustitución del Gen/métodos , Técnicas de Inactivación de Genes/métodos , Animales , Animales Modificados Genéticamente/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Mutación del Sistema de Lectura , Fenotipo , ARN Guía de Kinetoplastida/genética
16.
Science ; 362(6413)2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30262634

RESUMEN

Amputation of the axolotl forelimb results in the formation of a blastema, a transient tissue where progenitor cells accumulate prior to limb regeneration. However, the molecular understanding of blastema formation had previously been hampered by the inability to identify and isolate blastema precursor cells in the adult tissue. We have used a combination of Cre-loxP reporter lineage tracking and single-cell messenger RNA sequencing (scRNA-seq) to molecularly track mature connective tissue (CT) cell heterogeneity and its transition to a limb blastema state. We have uncovered a multiphasic molecular program where CT cell types found in the uninjured adult limb revert to a relatively homogenous progenitor state that recapitulates an embryonic limb bud-like phenotype including multipotency within the CT lineage. Together, our data illuminate molecular and cellular reprogramming during complex organ regeneration in a vertebrate.


Asunto(s)
Reprogramación Celular/fisiología , Células del Tejido Conectivo/fisiología , Miembro Anterior/fisiología , Regeneración/fisiología , Ambystoma mexicanum , Animales , Linaje de la Célula , Rastreo Celular , Genes Reporteros , Integrasas , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Células Madre/fisiología
17.
Dev Biol ; 433(2): 262-275, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29198566

RESUMEN

Axolotls can regenerate complex structures through recruitment and remodeling of cells within mature tissues. Accessing the underlying mechanisms at a molecular resolution is crucial to understand how injury triggers regeneration and how it proceeds. However, gene transformation in adult tissues can be challenging. Here we characterize the use of pseudotyped baculovirus (BV) as an effective gene transfer method both for cells within mature limb tissue and within the blastema. These cells remain competent to participate in regeneration after transduction. We further characterize the effectiveness of BV for gene overexpression studies by overexpressing Shh in the blastema, which yields a high penetrance of classic polydactyly phenotypes. Overall, our work establishes BV as a powerful tool to access gene function in axolotl limb regeneration.


Asunto(s)
Ambystoma mexicanum/fisiología , Miembro Anterior/fisiología , Regulación de la Expresión Génica , Vectores Genéticos/genética , Nucleopoliedrovirus/genética , Regeneración/fisiología , Transducción Genética , Ambystoma mexicanum/genética , Amputación Quirúrgica , Animales , Perfilación de la Expresión Génica , Genes Reporteros , Genes Sintéticos , Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiología , Proteínas de Homeodominio/fisiología , Humanos , Glicoproteínas de Membrana/fisiología , Mesodermo/citología , Proteínas Recombinantes/metabolismo , Regeneración/genética , Transgenes , Proteínas del Envoltorio Viral/fisiología , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
18.
Nature ; 549(7670): 86-90, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28880281

RESUMEN

Most animals show external bilateral symmetry, which hinders the observation of multiple internal left-right (L/R) asymmetries that are fundamental to organ packaging and function. In vertebrates, left identity is mediated by the left-specific Nodal-Pitx2 axis that is repressed on the right-hand side by the epithelial-mesenchymal transition (EMT) inducer Snail1 (refs 3, 4). Despite some existing evidence, it remains unclear whether an equivalent instructive pathway provides right-hand-specific information to the embryo. Here we show that, in zebrafish, BMP mediates the L/R asymmetric activation of another EMT inducer, Prrx1a, in the lateral plate mesoderm with higher levels on the right. Prrx1a drives L/R differential cell movements towards the midline, leading to a leftward displacement of the cardiac posterior pole through an actomyosin-dependent mechanism. Downregulation of Prrx1a prevents heart looping and leads to mesocardia. Two parallel and mutually repressed pathways, respectively driven by Nodal and BMP on the left and right lateral plate mesoderm, converge on the asymmetric activation of the transcription factors Pitx2 and Prrx1, which integrate left and right information to govern heart morphogenesis. This mechanism is conserved in the chicken embryo, and in the mouse SNAIL1 acts in a similar manner to Prrx1a in zebrafish and PRRX1 in the chick. Thus, a differential L/R EMT produces asymmetric cell movements and forces, more prominent from the right, that drive heart laterality in vertebrates.


Asunto(s)
Corazón/embriología , Morfogénesis , Miocardio/metabolismo , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/metabolismo , Actomiosina/metabolismo , Animales , Movimiento Celular , Embrión de Pollo , Transición Epitelial-Mesenquimal , Femenino , Proteínas de Homeodominio/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo
19.
NPJ Regen Med ; 1: 16002, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29302334

RESUMEN

A rapid method for temporally and spatially controlled CRISPR-mediated gene knockout in vertebrates will be an important tool to screen for genes involved in complex biological phenomena like regeneration. Here we show that in vivo injection of CAS9 protein-guide RNA (gRNA) complexes into the spinal cord lumen of the axolotl and subsequent electroporation leads to comprehensive knockout of Sox2 gene expression in SOX2+ neural stem cells with corresponding functional phenotypes from the gene knockout. This is particularly surprising considering the known prevalence of RNase activity in cerebral spinal fluid, which apparently the CAS9 protein protects against. The penetrance/efficiency of gene knockout in the protein-based system is far higher than corresponding electroporation of plasmid-based CRISPR systems. We further show that simultaneous delivery of CAS9-gRNA complexes directed against Sox2 and GFP yields efficient knockout of both genes in GFP-reporter animals. Finally, we show that this method can also be applied to other tissues such as skin and limb mesenchyme. This efficient delivery method opens up the possibility for rapid in vivo genetic screens during axolotl regeneration and can in principle be applied to other vertebrate tissue systems.

20.
Nat Protoc ; 9(3): 529-40, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24504478

RESUMEN

The axolotl (Mexican salamander, Ambystoma mexicanum) has become a very useful model organism for studying limb and spinal cord regeneration because of its high regenerative capacity. Here we present a protocol for successfully mating and breeding axolotls in the laboratory throughout the year, for metamorphosing axolotls by a single i.p. injection and for axolotl transgenesis using I-SceI meganuclease and the mini Tol2 transposon system. Tol2-mediated transgenesis provides different features and advantages compared with I-SceI-mediated transgenesis, and it can result in more than 30% of animals expressing the transgene throughout their bodies so that they can be directly used for experimentation. By using Tol2-mediated transgenesis, experiments can be performed within weeks (e.g., 5-6 weeks for obtaining 2-3-cm-long larvae) without the need to establish germline transgenic lines (which take 12-18 months). In addition, we describe here tamoxifen-induced Cre-mediated recombination in transgenic axolotls.


Asunto(s)
Ambystoma mexicanum/fisiología , Crianza de Animales Domésticos/métodos , Cruzamiento/métodos , Técnicas de Transferencia de Gen , Metamorfosis Biológica/fisiología , Modelos Animales , Animales , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Recombinación Genética/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Tamoxifeno , Transposasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...