Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroimage ; 101: 633-43, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25058899

RESUMEN

Motion correction is a key element for imaging the fetal brain in-utero using Magnetic Resonance Imaging (MRI). Maternal breathing can introduce motion, but a larger effect is frequently due to fetal movement within the womb. Consequently, imaging is frequently performed slice-by-slice using single shot techniques, which are then combined into volumetric images using slice-to-volume reconstruction methods (SVR). For successful SVR, a key preprocessing step is to isolate fetal brain tissues from maternal anatomy before correcting for the motion of the fetal head. This has hitherto been a manual or semi-automatic procedure. We propose an automatic method to localize and segment the brain of the fetus when the image data is acquired as stacks of 2D slices with anatomy misaligned due to fetal motion. We combine this segmentation process with a robust motion correction method, enabling the segmentation to be refined as the reconstruction proceeds. The fetal brain localization process uses Maximally Stable Extremal Regions (MSER), which are classified using a Bag-of-Words model with Scale-Invariant Feature Transform (SIFT) features. The segmentation process is a patch-based propagation of the MSER regions selected during detection, combined with a Conditional Random Field (CRF). The gestational age (GA) is used to incorporate prior knowledge about the size and volume of the fetal brain into the detection and segmentation process. The method was tested in a ten-fold cross-validation experiment on 66 datasets of healthy fetuses whose GA ranged from 22 to 39 weeks. In 85% of the tested cases, our proposed method produced a motion corrected volume of a relevant quality for clinical diagnosis, thus removing the need for manually delineating the contours of the brain before motion correction. Our method automatically generated as a side-product a segmentation of the reconstructed fetal brain with a mean Dice score of 93%, which can be used for further processing.


Asunto(s)
Encéfalo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/embriología , Femenino , Feto , Edad Gestacional , Humanos , Movimiento (Física) , Embarazo , Diagnóstico Prenatal , Sensibilidad y Especificidad
2.
Artículo en Inglés | MEDLINE | ID: mdl-20879376

RESUMEN

MR image data can provide many features or measures although any single measure is unlikely to comprehensively characterize the underlying morphology. We present a framework in which multiple measures are used in manifold learning steps to generate coordinate embeddings which are then combined to give an improved single representation of the population. An application to neonatal brain MRI data shows that the use of shape and appearance measures in particular leads to biologically plausible and consistent representations correlating well with clinical data. Orthogonality among the correlations suggests the embedding components relate to comparatively independent morphological features. The rapid changes that occur in brain shape and in MR image appearance during neonatal brain development justify the use of shape measures (obtained from a deformation metric) and appearance measures (obtained from image similarity). The benefit of combining separate embeddings is demonstrated by improved correlations with clinical data and we illustrate the potential of the proposed framework in characterizing trajectories of brain development.


Asunto(s)
Algoritmos , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Diagnóstico Prenatal/métodos , Inteligencia Artificial , Humanos , Aumento de la Imagen/métodos , Recién Nacido , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Neuroimage ; 39(1): 348-58, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17919930

RESUMEN

We present methods for the quantitative analysis of brain growth based on the registration of longitudinal MR image data with the use of Jacobian determinant maps to characterise neuroanatomical changes. The individual anatomies, growth maps and tissue classes are also spatially normalised in an 'average space' and aggregated to provide atlases for the population at each timepoint. The average space representation is obtained using the average intersubject transformation within each timepoint. In an exemplar study, this approach is used to assess brain development in 25 infants between 1 and 2 years, and we show consistency in growth estimates between registration and segmentation approaches.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Técnica de Sustracción , Preescolar , Simulación por Computador , Femenino , Humanos , Aumento de la Imagen/métodos , Lactante , Recién Nacido , Masculino , Modelos Anatómicos , Modelos Neurológicos , Tamaño de los Órganos/fisiología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...