Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37292677

RESUMEN

Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the cellular and physiological mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic toxins, many of which are ligands for the aryl hydrocarbon receptor (AHR), are associated with adverse limb outcomes in PAD. We hypothesized that chronic AHR activation, driven by the accumulation of tryptophan-derived uremic metabolites, may mediate the myopathic condition in the presence of CKD and PAD. Both PAD patients with CKD and mice with CKD subjected to femoral artery ligation (FAL) displayed significantly higher mRNA expression of classical AHR-dependent genes ( Cyp1a1 , Cyp1b1 , and Aldh3a1 ) when compared to either muscle from the PAD condition with normal renal function ( P <0.05 for all three genes) or non-ischemic controls. Skeletal-muscle-specific AHR deletion in mice (AHR mKO ) significantly improved limb muscle perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and contractile function, as well as enhanced mitochondrial oxidative phosphorylation and respiratory capacity in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. These findings establish chronic AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in PAD. Further, the totality of the results provide support for testing of clinical interventions that diminish AHR signaling in these conditions.

2.
Circ Res ; 133(2): 158-176, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37325935

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic solutes, which are ligands for AHR (aryl hydrocarbon receptor), are associated with limb amputation in PAD. Herein, we examined the role of AHR activation in the myopathy of PAD and CKD. METHODS: AHR-related gene expression was evaluated in skeletal muscle obtained from mice and human PAD patients with and without CKD. AHRmKO (skeletal muscle-specific AHR knockout) mice with and without CKD were subjected to femoral artery ligation, and a battery of assessments were performed to evaluate vascular, muscle, and mitochondrial health. Single-nuclei RNA sequencing was performed to explore intercellular communication. Expression of the constitutively active AHR was used to isolate the role of AHR in mice without CKD. RESULTS: PAD patients and mice with CKD displayed significantly higher mRNA expression of classical AHR-dependent genes (Cyp1a1, Cyp1b1, and Aldh3a1) when compared with either muscle from the PAD condition with normal renal function (P<0.05 for all 3 genes) or nonischemic controls. AHRmKO significantly improved limb perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and strength, as well as enhanced mitochondrial function in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. CONCLUSIONS: These findings establish AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in CKD. Further, the totality of the results provides support for testing of clinical interventions that diminish AHR signaling in these conditions.


Asunto(s)
Enfermedades Musculares , Enfermedad Arterial Periférica , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Isquemia/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/metabolismo , Receptores de Hidrocarburo de Aril/genética , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo
3.
Front Physiol ; 13: 992413, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246103

RESUMEN

Introduction: L-Kynurenine (L-Kyn), a product of tryptophan (Trp) catabolism, has been linked with impairments in walking speed, muscle strength/size, and physical function. The purpose of this pilot study was to develop a dietary model that elevates plasma L-Kyn levels in mice and characterize its impact on muscle health and function. Methods: Four-month-old C57BL6J male mice were randomized to either a L-Kyn supplemented (150 mg/kg) or chow diet for 10 weeks. Plasma L-Kyn and Trp levels were measured via mass spectrometry. Primary outcomes included assessments of muscle weights, myofiber cross-sectional area (CSA), nerve-stimulated contractile performance, and mitochondrial oxidative phosphorylation (OXPHOS) and hydrogen peroxide (H2O2) production. Additional experiments in cultured myotubes explored the impact of enhancing L-Kyn metabolism. Results: Mice randomized to the L-Kyn diet displayed significant increases in plasma L-Kyn levels (p = 0.0028) and the L-Kyn/Trp ratio (p = 0.011) when compared to chow fed mice. Food intake and body weights were not different between groups. There were no detectable differences in muscle weights, myofiber CSA, or contractile performance. L-Kyn fed mice displayed reductions in mitochondrial OXPHOS (p = 0.05) and maximal ADP-stimulated respiration (p = 0.0498). In cultured myotubes, overexpression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha prevented atrophy and proteolysis, as well as deficits in mitochondrial respiration with L-Kyn treatment. Conclusion: Dietary feeding of L-Kyn increases plasma L-Kyn levels and the L-Kyn/Trp ratio in healthy male mice. Mitochondrial impairments in muscle were observed in mice with elevated L-Kyn without changes in muscle size or function. Enhancing L-Kyn metabolism can protect against these effects in culture myotubes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...