Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Anim ; 73(1): 11-19, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37460310

RESUMEN

The interconnection of heart performance and kidney function plays an important role for maintaining homeostasis through a variety of physiological crosstalk between these organs. It has been suggested that acute or chronic dysfunction in one organ causes dysregulation in another one, like patients with cardiorenal syndrome. Despite its growing recognition as global health issues, still little is known on pathophysiological evaluation between the two organs. Previously, we established a preclinical murine model with cardiac hypertrophy and fibrosis, and impaired kidney function with renal enlargement and increased urinary albumin levels induced by co-treatment with vasopressor angiotensin II (A), unilateral nephrectomy (N), and salt loading (S) (defined as ANS treatment) for 4 weeks. However, how both tissues, heart and kidney, are initially affected by ANS treatment during the progression of tissue damages remains to be determined. Here, at one week after ANS treatment, we found that cardiac function in ANS-treated mice (ANS mice) are sustained despite hypertrophy. On the other hand, kidney dysfunction is evident in ANS mice, associated with high blood pressure, enlarged glomeruli, increased levels of urinary albumin and urinary neutrophil gelatinase-associated lipocalin, and reduced creatinine clearance. Our results suggest that cardiorenal tissues become damaged at one week after ANS treatment and that ANS mice are useful as a model causing transition from early to late-stage damages of cardiorenal tissues.


Asunto(s)
Angiotensina II , Síndrome Cardiorrenal , Humanos , Ratones , Animales , Cloruro de Sodio Dietético/efectos adversos , Nefrectomía/efectos adversos , Riñón , Síndrome Cardiorrenal/tratamiento farmacológico , Albúminas
2.
J Biol Chem ; 299(3): 102964, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736425

RESUMEN

Cardiac hypertrophy is a crucial risk factor for hypertensive disorders during pregnancy, but its progression during pregnancy remains unclear. We previously showed cardiac hypertrophy in a pregnancy-associated hypertensive (PAH) mouse model, in which an increase in angiotensin II (Ang II) levels was induced by human renin and human angiotensinogen, depending on pregnancy conditions. Here, to elucidate the factors involved in the progression of cardiac hypertrophy, we performed a comprehensive analysis of changes in gene expression in the hearts of PAH mice and compared them with those in control mice. We found that alpha-1A adrenergic receptor (Adra1a) mRNA levels in the heart were significantly reduced under PAH conditions, whereas the renin-angiotensin system was upregulated. Furthermore, we found that Adra1a-deficient PAH mice exhibited more severe cardiac hypertrophy than PAH mice. Our study suggests that Adra1a levels are regulated by renin-angiotensin system and that changes in Adra1a expression are involved in progressive cardiac hypertrophy in PAH mice.


Asunto(s)
Angiotensina II , Hipertensión Inducida en el Embarazo , Receptores Adrenérgicos alfa 1 , Animales , Femenino , Humanos , Ratones , Embarazo , Angiotensina II/metabolismo , Cardiomegalia/metabolismo , Miocardio/metabolismo , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Sistema Renina-Angiotensina , Hipertensión Inducida en el Embarazo/genética , Hipertensión Inducida en el Embarazo/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(6): 3150-3156, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31992639

RESUMEN

Heart failure and chronic kidney disease are major causes of morbidity and mortality internationally. Although these dysfunctions are common and frequently coexist, the factors involved in their relationship in cardiorenal regulation are still largely unknown, mainly due to a lack of detailed molecular targets. Here, we found the increased plasma histamine in a preclinical mouse model of severe cardiac dysfunction, that had been cotreated with angiotensin II (Ang II), nephrectomy, and salt (ANS). The ANS mice exhibited impaired renal function accompanied with heart failure, and histamine depletion, by the genetic inactivation of histidine decarboxylase in mice, exacerbated the ANS-induced cardiac and renal abnormalities, including the reduction of left ventricular fractional shortening and renal glomerular and tubular injuries. Interestingly, while the pharmacological inhibition of the histamine receptor H3 facilitated heart failure and kidney injury in ANS mice, administration of the H3 agonist immethridine (Imm) was protective against cardiorenal damages. Transcriptome analysis of the kidney and biochemical examinations using blood samples illustrated that the increased inflammation in ANS mice was alleviated by Imm. Our results extend the pharmacological use of H3 agonists beyond the initial purposes of its drug development for neurogenerative diseases and have implications for therapeutic potential of H3 agonists that invoke the anti-inflammatory gene expression programming against cardiorenal damages.


Asunto(s)
Antiinflamatorios/farmacología , Insuficiencia Cardíaca/metabolismo , Agonistas de los Receptores Histamínicos/farmacología , Histamina/metabolismo , Enfermedades Renales/metabolismo , Animales , Modelos Animales de Enfermedad , Corazón/efectos de los fármacos , Histamina/sangre , Riñón/efectos de los fármacos , Ratones , Sustancias Protectoras/farmacología , Receptores Histamínicos H3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...