Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep Phys Sci ; 5(8): 101930, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39220756

RESUMEN

Bioelectronics provide efficient information exchange between living systems and man-made devices, acting as a vital bridge in merging the domains of biology and technology. Using functional fibers as building blocks, bioelectronics could be hierarchically assembled with vast design possibilities across different scales, enhancing their application-specific biointegration, ergonomics, and sustainability. In this work, the authors review recent developments in bioelectronic fiber elements by reflecting on their fabrication approaches and key performance indicators, including the life cycle sustainability, environmental electromechanical performance, and functional adaptabilities. By delving into the challenges associated with physical deployment and exploring innovative design strategies for adaptability, we propose avenues for future development of bioelectronics via fiber building blocks, boosting the potential of "Fiber of Things" for market-ready bioelectronic products with minimized environmental impact.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37476002

RESUMEN

Background: The field of tissue engineering has provided valuable three-dimensional species-specific models of the human myocardium in the form of human Engineered Cardiac Tissues (hECTs) and similar constructs. However, hECT systems are often bottlenecked by a lack of openly available software that can collect data from multiple tissues at a time, even in multi-tissue bioreactors, which limits throughput in phenotypic and therapeutic screening applications. Methods: We developed Rianú, an open-source web application capable of simultaneously tracking multiple hECTs on flexible end-posts. This software is operating system agnostic and deployable on a remote server, accessible via a web browser with no local hardware or software requirements. The software incorporates object-tracking capabilities for multiple objects simultaneously, an algorithm for twitch tracing analysis and contractile force calculation, and a data compilation system for comparative analysis within and amongst groups. Validation tests were performed using in-silico and in-vitro experiments for comparison with established methods and interventions. Results: Rianú was able to detect the displacement of the flexible end-posts with a sub-pixel sensitivity of 0.555 px/post (minimum increment in post displacement) and a lower limit of 1.665 px/post (minimum post displacement). Compared to our established reference for contractility assessment, Rianú had a high correlation for all parameters analyzed (ranging from R2=0.7514 to R2=0.9695), demonstrating its high accuracy and reliability. Conclusions: Rianú provides simultaneous tracking of multiple hECTs, expediting the recording and analysis processes, and simplifies time-based intervention studies. It also allows data collection from different formats and has scale-up capabilities proportional to the number of tissues per field of view. These capabilities will enhance throughput of hECTs and similar assays for in-vitro analysis in disease modeling and drug screening applications.

3.
Stem Cell Res Ther ; 10(1): 373, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31801634

RESUMEN

BACKGROUND: Delivery of stem cells to the failing heart is a promising therapeutic strategy. However, the improvement in cardiac function in animal studies has not fully translated to humans. To help bridge the gap between species, we investigated the effects of adult human cardiac stem cells (hCSCs) on contractile function of human engineered cardiac tissues (hECTs) as a species-specific model of the human myocardium. METHODS: Human induced pluripotent stem cell-derived cardiomyoctes (hCMs) were mixed with Collagen/Matrigel to fabricate control hECTs, with an experimental group of hCSC-supplemented hECT fabricated using a 9:1 ratio of hCM to hCSC. Functional testing was performed starting on culture day 6, under spontaneous conditions and also during electrical pacing from 0.25 to 1.0 Hz, measurements repeated at days 8 and 10. hECTs were then frozen and processed for gene analysis using a Nanostring assay with a cardiac targeted custom panel. RESULTS: The hCSC-supplemented hECTs displayed a twofold higher developed force vs. hCM-only controls by day 6, with approximately threefold higher developed stress and maximum rates of contraction and relaxation during pacing at 0.75 Hz. The spontaneous beat rate characteristics were similar between groups, and hCSC supplementation did not adversely impact beat rate variability. The increased contractility persisted through days 8 and 10, albeit with some decrease in the magnitude of the difference of the force by day 10, but with developed stress still significantly higher in hCSC-supplemented hECT; these findings were confirmed with multiple hCSC and hCM cell lines. The force-frequency relationship, while negative for both, control (- 0.687 Hz- 1; p = 0.013 vs. zero) and hCSC-supplemented (- 0.233 Hz- 1;p = 0.067 vs. zero) hECTs, showed a significant rectification in the regression slope in hCSC-supplemented hECT (p = 0.011 vs. control). Targeted gene exploration (59 genes) identified a total of 14 differentially expressed genes, with increases in the ratios of MYH7/MHY6, MYL2/MYL7, and TNNI3/TNNI1 in hCSC-supplemented hECT versus controls. CONCLUSIONS: For the first time, hCSC supplementation was shown to significantly improve human cardiac tissue contractility in vitro, without evidence of proarrhythmic effects, and was associated with increased expression of markers of cardiac maturation. These findings provide new insights about adult cardiac stem cells as contributors to functional improvement of human myocardium.


Asunto(s)
Contracción Miocárdica/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Diferenciación Celular , Colágeno/química , Combinación de Medicamentos , Estimulación Eléctrica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Laminina/química , Miocardio/citología , Miocitos Cardíacos/citología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Proteoglicanos/química , Transcriptoma , Troponina I/genética , Troponina I/metabolismo
4.
Methods Mol Biol ; 1816: 145-159, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29987817

RESUMEN

The lack of biomimetic in vitro models of the human heart has posed a critical barrier to progress in the field of modeling cardiac disease. Human engineered cardiac tissues (hECTs)-autonomous, beating structures that recapitulate key aspects of native cardiac muscle physiology-offer an attractive alternative to traditional in vitro models. Here we describe the use of hECTs to advance our understanding and modeling of cardiac diseases in order to test therapeutic interventions, with a focus on contractile dysfunction in the setting of inherited and acquired forms of cardiomyopathies. Four major procedures are discussed in this chapter: (1) preparation of hECTs from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on single-tissue and multitissue bioreactors; (2) data acquisition of hECT contractile function on both of these platforms; (3) hECT modeling of hereditary phospholamban-R14 deletion-dilated cardiomyopathy; and (4) cryo-injury and doxorubicin-induced hECT models of acquired cardiomyopathy.


Asunto(s)
Cardiomiopatías/patología , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Ingeniería de Tejidos/métodos , Reactores Biológicos , Cardiomiopatías/etiología , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/patología , Doxorrubicina , Diseño de Equipo , Congelación , Humanos , Contracción Miocárdica , Miocardio/citología , Miocardio/patología , Miocitos Cardíacos/patología , Ingeniería de Tejidos/instrumentación
5.
Circ Res ; 122(7): 933-944, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29449318

RESUMEN

RATIONALE: The promising clinical benefits of delivering human mesenchymal stem cells (hMSCs) for treating heart disease warrant a better understanding of underlying mechanisms of action. hMSC exosomes increase myocardial contractility; however, the exosomal cargo responsible for these effects remains unresolved. OBJECTIVE: This study aims to identify lead cardioactive hMSC exosomal microRNAs to provide a mechanistic basis for optimizing future stem cell-based cardiotherapies. METHODS AND RESULTS: Integrating systems biology and human engineered cardiac tissue (hECT) technologies, partial least squares regression analysis of exosomal microRNA profiling data predicted microRNA-21-5p (miR-21-5p) levels positively correlate with contractile force and calcium handling gene expression responses in hECTs treated with conditioned media from multiple cell types. Furthermore, miR-21-5p levels were significantly elevated in hECTs treated with the exosome-enriched fraction of the hMSC secretome (hMSC-exo) versus untreated controls. This motivated experimentally testing the human-specific role of miR-21-5p in hMSC-exo-mediated increases of cardiac tissue contractility. Treating hECTs with miR-21-5p alone was sufficient to recapitulate effects observed with hMSC-exo on hECT developed force and expression of associated calcium handling genes (eg, SERCA2a and L-type calcium channel). Conversely, knockdown of miR-21-5p in hMSCs significantly diminished exosomal procontractile and associated calcium handling gene expression effects on hECTs. Western blots supported miR-21-5p effects on calcium handling gene expression at the protein level, corresponding to significantly increased calcium transient amplitude and decreased decay time constant in comparison to miR-scramble control. Mechanistically, cotreating with miR-21-5p and LY294002, a PI3K inhibitor, suppressed these effects. Finally, mathematical simulations predicted the translational capacity for miR-21-5p treatment to restore calcium handling in mature ischemic adult human cardiomyocytes. CONCLUSIONS: miR-21-5p plays a key role in hMSC-exo-mediated effects on cardiac contractility and calcium handling, likely via PI3K signaling. These findings may open new avenues of research to harness the role of miR-21-5p in optimizing future stem cell-based cardiotherapies.


Asunto(s)
Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/fisiología , Comunicación Paracrina , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Línea Celular , Células Cultivadas , Humanos , MicroARNs/genética , Miocitos Cardíacos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA