Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(3): e11128, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469050

RESUMEN

Habitat degradation and associated reductions in ecosystem functions can be reversed by reintroducing or 'rewilding' keystone species. Rewilding projects have historically targeted restoration of processes such as grazing regimes or top-down predation effects. Few projects focus on restoring decomposition efficiency, despite the pivotal role decomposition plays in global carbon sequestration and nutrient cycling. Here, we tested whether rewilding entire communities of detritivorous invertebrates and fungi can improve litter decomposition efficiency and restore detritivore communities during ecological restoration. Rewilding was conducted by transplanting leaf litter and soil, including associated invertebrate and fungal communities from species-rich remnant sites into species-poor, and geographically isolated, revegetated farmland sites in a temperate woodland region of southeastern Australia. We compared communities in sites under the following treatments: remnant (conservation area and source of litter transplant), rewilded revegetation (revegetated farmland site with litter transplant) and control revegetation (revegetated site, no transplant). In one 'before' and three 'after' sampling periods, we measured litter decomposition and the abundance and diversity of detritivorous invertebrates and fungi. We quantified the effect of detritivores on the rate of litter decomposition using piecewise Structural Equation Modelling. Decomposition was significantly faster in rewilding sites than in both control and remnant areas and was largely driven by a greater abundance of invertebrate detritivores. Similarly, the abundance of invertebrate detritivores in rewilding revegetation sites exceeded the level of remnant communities, whereas there was little difference between control and remnant sites. In contrast, rewilding did not increase saprotrophic fungi relative abundance/diversity and there was no strong relationship between decomposition and fungal diversity. Our findings suggest the relatively simple act of transplanting leaf litter and soil can increase functional efficiency during restoration and alter community composition. Our methods may prove important across a range of contexts where other restoration methods have failed to restore ecosystem processes to pre-degradation levels.

2.
Ecol Evol ; 13(11): e10711, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034333

RESUMEN

Understanding the influence of non-native herbivores on ecosystems by means of dietary foraging and seed dispersal is important for understanding how non-native species can alter an invaded landscape, yet requires multiple methodologies. In south-eastern Australia, introduced sambar deer (Rusa unicolor) are rapidly expanding in range and placing native ecosystems at risk through browsing and as vectors for seed dispersal. We simultaneously investigated sambar deer dietary composition and seed dispersal using DNA sequencing and germination trials, from faecal pellets collected in alpine and wet forest ecosystems. This allowed us to contrast the dietary impacts of introduced sambar deer in different environments, and to explore the potential for habitat-specific variation in diet. DNA sequencing of the trnL, ITS2 and rbcL gene regions revealed a diverse plant species dietary composition comprising 1003 operational taxonomic units (OTUs). Sambar deer exhibited intermediate feeder behaviours dominated by forbs in alpine and shrubs in wet forest ecosystems. A large proportion of plant OTUs were considered likely to be native, however, the proportion of exotic species in the diet in both ecosystems was greater than would be expected based on the proportion of exotic species in each of the two landscapes. Seed germination trials indicated that sambar deer can disperse a substantial number of native and exotic species in both alpine and wet forest ecosystems. In alpine ecosystems, an individual sambar deer was estimated to disperse on average 816 (±193) seeds per day during the study period, of which 652 (±176) were exotic. Synthesis and applications. Our results suggest that native plant species comprise the majority of sambar deer diets in Australian ecosystems and that the introduced species is dispersing both native and exotic plant species via endozoochory. However, exotic species seedling germination numbers were significantly higher in alpine ecosystems, and given the large daily movements of sambar deer, represents a significant vector for the spread of exotic plant species. Management of native plant species and vegetation communities of conservation significance, or at risk to sambar deer browsing is of high priority, through either the removal of sambar deer or implementation of exclusion-based methods.

3.
Ecol Evol ; 13(11): e10785, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034337

RESUMEN

The factors that influence population structure and connectivity are unknown for most terrestrial invertebrates but are of particular interest both for understanding the impacts of disturbance and for determining accurate levels of biodiversity and local endemism. The main objective of this study was to determine the historical patterns of genetic differentiation and contemporary gene flow in the terrestrial snail, Austrochloritis kosciuszkoensis (Shea & O. L. Griffiths, 2010). Snails were collected in the Mt Buffalo and Alpine National Parks in Victoria, in a bid to understand how populations of this species are connected both within continuous habitat and between adjacent, yet separate environments. Utilising both mitochondrial DNA (mtDNA) and single nucleotide polymorphism (SNP) data, the degree of population structure was determined within and between sites. Very high levels of genetic divergence were found between the Mt Buffalo and Alpine snails, with no evidence for genetic exchange detected between the two regions, indicating speciation has possibly occurred between the two regions. Our analyses of the combined mtDNA and nDNA (generated from SNPs) data have revealed patterns of genetic diversity that are consistent with a history of long-term isolation and limited connectivity. This history may be related to past cycles of changes to the climate over hundreds of thousands of years, which have, in part, caused the fragmentation of Australian forests. Within both regions, extremely limited gene flow between separate populations suggests that these land snails have very limited dispersal capabilities across existing landscape barriers, especially at Mt Buffalo: here, populations only 5 km apart from each other are genetically differentiated. The distinct genetic divergences and clearly reduced dispersal ability detected in this data explain the likely existence of at least two previously unnamed cryptic Austrochloritis species within a 30-50 km radius, and highlight the need for more concentrated efforts to understand population structure and gene flow in terrestrial invertebrates.

4.
Ecol Appl ; 33(2): e2779, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36398530

RESUMEN

Restoration of degraded areas is now a central tool in humanity's response to continued species-loss. However, restoration projects often report exceedingly slow or failed recolonization of fauna, especially dispersal-constrained groups such as invertebrates. Active interventions via reintroducing or "rewilding" invertebrates may assist recolonization and speed up restoration of communities toward a desired target. However, invertebrate rewilding is rarely implemented during ecological restoration. Here, we studied the efficacy of invertebrate rewilding as a means of reintroducing dispersal-constrained species and improving diversity and compositional similarities to remnant communities during restoration. Rewilding was conducted by transplanting leaf litter and soil, including associated communities of invertebrates from species rich remnant sites into species poor, and geographically isolated, revegetated farmland sites. We sampled pre- and post-rewilding invertebrate communities in remnant, rewilded revegetation, and control revegetation sites. We analyzed morphospecies richness, abundance, community composition, and modeled morphospecies traits (dispersal method/trophic guild) using a Hierarchical Modelling of Species Communities approach to determine which biological properties facilitated establishment. Beetle (Coleoptera) morphospecies richness increased rapidly in rewilded sites and was indistinguishable from remnant communities as early as 7 months post-rewilding. Beetle community similarity in the rewilding sites significantly deviated from the control sites 27 months post-rewilding, however remnant communities remained distinct over the study timeframe. Establishment success varied as other taxa did not respond as consistently as beetles within the study timeframe. Furthermore, there were no discernible shifts in dispersal traits in rewilded sites. However, predatory morphospecies were more likely to establish post-rewilding than other trophic groups. Our results demonstrate that the relatively simple act of transplanting leaf litter can result in comparatively large increases in morphospecies richness during restoration in a short timeframe. We advocate methodologies such as ours should be adopted more frequently to address failed community restoration as they are cost-effective and can be easily applied by practitioners in various restoration settings. However, further efficacy tests (e.g., varying the number of rewilding events) and longer study timeframes are needed to ensure effectiveness for a broader range of invertebrate taxa and ecosystems.


Asunto(s)
Escarabajos , Ecosistema , Animales , Invertebrados/fisiología , Suelo , Biodiversidad
5.
Ecol Evol ; 11(12): 7187-7200, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34188805

RESUMEN

Restoration ecology has historically focused on reconstructing communities of highly visible taxa while less visible taxa, such as invertebrates and microbes, are ignored. This is problematic as invertebrates and microbes make up the vast bulk of biodiversity and drive many key ecosystem processes, yet they are rarely actively reintroduced following restoration, potentially limiting ecosystem function and biodiversity in these areas.In this review, we discuss the current (limited) incorporation of invertebrates and microbes in restoration and rewilding projects. We argue that these groups should be actively rewilded during restoration to improve biodiversity, ecosystem function outcomes, and highlight how they can be used to greater effect in the future. For example, invertebrates and microbes are easily manipulated, meaning whole communities can potentially be rewilded through habitat transplants in a practice that we refer to as "whole-of-community" rewilding.We provide a framework for whole-of-community rewilding and describe empirical case studies as practical applications of this under-researched restoration tool that land managers can use to improve restoration outcomes.We hope this new perspective on whole-of-community restoration will promote applied research into restoration that incorporates all biota, irrespective of size, while also enabling a better understanding of fundamental ecological theory, such as colonization and competition trade-offs. This may be a necessary consideration as invertebrates that are important in providing ecosystem services are declining globally; targeting invertebrate communities during restoration may be crucial in stemming this decline.

6.
Ecol Evol ; 11(6): 2535-2550, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33767820

RESUMEN

While there is now strong evidence that many factors can shape dispersal, the mechanisms influencing connectivity patterns are species-specific and remain largely unknown for many species with a high dispersal potential. The rock lobsters Jasus tristani and Jasus paulensis have a long pelagic larval duration (up to 20 months) and inhabit seamounts and islands in the southern Atlantic and Indian Oceans, respectively. We used a multidisciplinary approach to assess the genetic relationships between J. tristani and J. paulensis, investigate historic and contemporary gene flow, and inform fisheries management. Using 17,256 neutral single nucleotide polymorphisms we found low but significant genetic differentiation. We show that patterns of connectivity changed over time in accordance with climatic fluctuations. Historic migration estimates showed stronger connectivity from the Indian to the Atlantic Ocean (influenced by the Agulhas Leakage). In contrast, the individual-based model coupled with contemporary migration estimates inferred from genetic data showed stronger inter-ocean connectivity in the opposite direction from the Atlantic to the Indian Ocean driven by the Subtropical Front. We suggest that the J. tristani and J. paulensis historical distribution might have extended further north (when water temperatures were lower) resulting in larval dispersal between the ocean basis being more influenced by the Agulhas Leakage than the Subtropical Front. As water temperatures in the region increase in accordance with anthropogenic climate change, a southern shift in the distribution range of J. tristani and J. paulensis could further reduce larval transport from the Indian to the Atlantic Ocean, adding complexity to fisheries management.

7.
Mol Ecol ; 30(5): 1223-1236, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33342039

RESUMEN

Investigating historical gene flow in species complexes can indicate how environmental and reproductive barriers shape genome divergence during speciation. The processes influencing species diversification under environmental change remain one of the central focal points of evolutionary biology, particularly for marine organisms with high dispersal potential. We investigated genome-wide divergence, introgression patterns and inferred demographic history between species pairs of all six extant rock lobster species (Jasus spp.), which have a long larval duration of up to two years and have populated continental shelf and seamount habitats around the globe at approximately 40o S. Genetic differentiation patterns reflected geographic isolation and the environment (i.e. habitat structure). Eastern Pacific species (J. caveorum and J. frontalis) were geographically more distant and genetically more differentiated from the remaining four species. Species associated with continental shelf habitats shared a common ancestry, but are geographically distant from one another. Similarly, species associated with island/seamount habitats in the Atlantic and Indian Oceans shared a common ancestry, but are also geographically distant. Benthic temperature was the environmental variable that explained most of the genetic differentiation (FST ), while controlling for the effects of geographic distance. Eastern Pacific species retained a signal of strict isolation following ancient migration, whereas species pairs from Australia and Africa, and seamounts in the Indian and Atlantic oceans, included events of introgression after secondary contact. Our results reveal important effects of habitat and demographic processes on the recent divergence of species within the genus Jasus, providing one of the first empirical studies of genome-wide drivers of diversification that incorporates all extant species in a marine genus with long pelagic larval duration.


Asunto(s)
Filogenia , África , Océano Atlántico , Australia , Océano Índico , Islas
8.
J Biomed Mater Res A ; 106(9): 2402-2411, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29660252

RESUMEN

Biomaterial drug delivery systems (DDS) can be used to regulate growth factor release and combat the limited intrinsic regeneration capabilities of central nervous system (CNS) tissue following injury and disease. Of particular interest are systems that aid in oligodendrocyte regeneration, as oligodendrocytes generate myelin which surrounds neuronal axons and helps transmit signals throughout the CNS. Oligodendrocyte precursor cells (OPCs) are found in small numbers in the adult CNS, but are unable to effectively differentiate following CNS injury. Delivery of signaling molecules can initiate a favorable OPC response, such as proliferation or differentiation. Here, we investigate the delivery of one such molecule, platelet derived growth factor-AA (PDGF-AA), from poly(lactic-co-glycolic) acid microparticles to OPCs in a 3D polyethylene glycol-based hydrogel. The goal of this DDS was to better understand the relationship between PDGF-AA release kinetics and OPC fate. The system approximates native brain tissue stiffness, while incorporating PDGF-AA under seven different delivery scenarios. Within this DDS, supply of PDGF-AA followed by PDGF-AA withdrawal caused OPCs to upregulate gene expression of myelin basic protein (MBP) by factors of 1.6-9.2, whereas continuous supply of PDGF-AA caused OPCs to remain proliferative. At the protein expression level, we observed an upregulation in O1, a marker for mature oligodendrocytes. Together, these results show that burst release followed by withdrawal of PDGF-AA from a hydrogel DDS stimulates survival, proliferation, and differentiation of OPCs in vitro. Our results could inform the development of improved neural regeneration strategies that incorporate delivery of PDGF-AA to the injured CNS. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2402-2411, 2018.


Asunto(s)
Células Inmovilizadas/citología , Sistemas de Liberación de Medicamentos/métodos , Hidrogeles/química , Células Precursoras de Oligodendrocitos/citología , Tamaño de la Partícula , Factor de Crecimiento Derivado de Plaquetas/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Módulo de Elasticidad , Humanos , Cinética , Células Precursoras de Oligodendrocitos/efectos de los fármacos
9.
Biotechnol Bioeng ; 115(1): 246-256, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28872660

RESUMEN

Reactive oxygen species (ROS), encompassing all oxygen radical or non-radical oxidizing agents, play key roles in disease progression. Controlled delivery of antioxidants is therapeutically relevant in such oxidant-stressed environments. Encapsulating small hydrophilic molecules into hydrophobic polymer microparticles via traditional emulsion methods has long been a challenge due to rapid mass transport of small molecules out of particle pores. We have developed a simple alteration to the existing water-in-oil-in-water (W/O/W) drug encapsulation method that dramatically improves loading efficiency: doping external water phases with drug to mitigate drug diffusion out of the particle during fabrication. PLGA microparticles with diameters ranging from 0.6 to 0.9 micrometers were fabricated, encapsulating high loads of 0.6-0.9 µm diameter PLGA microparticles were fabricated, encapsulating high loads of the antioxidant N-acetylcysteine (NAC), and released active, ROS-scavenging NAC for up to 5 weeks. Encapsulation efficiencies, normalized to the theoretical load of traditional encapsulation without doping, ranged from 96% to 400%, indicating that NAC-loaded external water phases not only prevented drug loss due to diffusion, but also doped the particles with additional drug. Antioxidant-doped particles positively affected the metabolism of oligodendrocyte progenitor cells (OPCs) under H2 O2 -mediated oxidative stress when administered both before (protection) or after (rescue) injury. Antioxidant doped particles improved outcomes of OPCs experiencing multiple doses of H2 O2 by increasing the intracellular glutathione content and preserving cellular viability relative to the injury control. Furthermore, antioxidant-doped particles preserve cell number, number of process extensions, cytoskeletal morphology, and nuclear size of H2 O2 -stressed OPCs relative to the injury control. These NAC-doped particles have the potential to provide temporally-controlled antioxidant therapy in neurodegenerative disorders such as multiple sclerosis (MS) that are characterized by continuous oxidative stress.


Asunto(s)
Acetilcisteína/farmacología , Antioxidantes/farmacología , Materiales Biocompatibles/síntesis química , Portadores de Fármacos/síntesis química , Ácido Láctico/síntesis química , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Estrés Oxidativo , Ácido Poliglicólico/síntesis química , Acetilcisteína/síntesis química , Animales , Antioxidantes/síntesis química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ratones , Células Precursoras de Oligodendrocitos/fisiología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
10.
Mol Ecol ; 27(1): 54-65, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29134719

RESUMEN

Population structure of many marine organisms is spatially patchy and varies within and between years, a phenomenon defined as chaotic genetic patchiness. This results from the combination of planktonic larval dispersal and environmental stochasticity. Additionally, in species with bi-partite life, postsettlement selection can magnify these genetic differences. The high fecundity (up to 500,000 eggs annually) and protracted larval duration (12-24 months) and dispersal of the southern rock lobster, Jasus edwardsii, make it a good test species for chaotic genetic patchiness and selection during early benthic life. Here, we used double digest restriction site-associated DNA sequencing (ddRADseq) to investigate chaotic genetic patchiness and postsettlement selection in this species. We assessed differences in genetic structure and diversity of recently settled pueruli across four settlement years and between two sites in southeast Australia separated by approximately 1,000 km. Postsettlement selection was investigated by identifying loci under putative positive selection between recently settled pueruli and postpueruli and quantifying differences in the magnitude and strength of the selection at each year and site. Genetic differences within and among sites through time in neutral SNP markers indicated chaotic genetic patchiness. Recently settled puerulus at the southernmost site exhibited lower genetic diversity during years of low puerulus catches, further supporting this hypothesis. Finally, analyses of outlier SNPs detected fluctuations in the magnitude and strength of the markers putatively under positive selection over space and time. One locus under putative positive selection was consistent at both locations during the same years, suggesting the existence of weak postsettlement selection.


Asunto(s)
Variación Genética , Genética de Población , Palinuridae/genética , Animales , Australia , Geografía , Heterocigoto , Polimorfismo de Nucleótido Simple/genética , Selección Genética , Análisis de Secuencia de ADN , Tasmania , Factores de Tiempo
11.
Mitochondrial DNA B Resour ; 2(2): 453-454, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-33473860

RESUMEN

The mitochondrial genome of the hog deer (Axis porcinus) was sequenced using an Illumina MiSeq. The assembled genome consists of 16,351 bp, and shared a 99.8% similarity to the published chital deer (Axis axis) genome, suggesting that they belong to the same species. Further research is ongoing to understand why these mitochondrial genomes are highly similar.

12.
BMC Syst Biol ; 10(1): 85, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27576572

RESUMEN

BACKGROUND: A complex network of gene interactions controls gene regulation throughout development and the life of the organisms. Insights can be made into these processes by studying the functional interactions (or "motifs") which make up these networks. RESULTS: We sought to understand the functionality of one of these network motifs, negative feedback, in a multi-cellular system. This was accomplished using a synthetic network expressed in the Drosophila melanogaster embryo using the yeast proteins Gal4 (a transcriptional activator) and Gal80 (an inhibitor of Gal4 activity). This network is able to produce an attenuation or shuttling phenotype depending on the Gal80/Gal4 ratio. This shuttling behavior was validated by expressing Gal3, which inhibits Gal80, to produce a localized increase in free Gal4 and therefore signaling. Mathematical modeling was used to demonstrate the capacity for negative feedback to produce these varying outputs. CONCLUSIONS: The capacity of a network motif to exhibit different phenotypes due to minor changes to the network in multi-cellular systems was shown. This work demonstrates the importance of studying network motifs in multi-cellular systems.


Asunto(s)
Biología Computacional , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Retroalimentación Fisiológica , Redes Reguladoras de Genes , Proteínas de Saccharomyces cerevisiae/genética , Animales , Expresión Génica , Modelos Genéticos
13.
J Mater Chem B ; 3(40): 7867-7880, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-32262900

RESUMEN

Hydrogel-based biomaterials, often classified as synthetic or natural, have long been pursued for cell culture, tissue engineering, regenerative medicine, and drug delivery. This classification system is now being blurred as hybrid partially synthetic systems using elements of native and designer molecules gain traction. Partially synthetic polymer gels can offer protection of encapsulated cells or drugs and provide instructional biochemical and/or biophysical cues to cells. To enable cellular interaction however, they must be endowed with bioactive elements. The extracellular matrix (ECM) provides a "toolbox" of bioactive moieties that can be incorporated into user-defined synthetic polymer scaffolds to promote cell responses such as migration or cell-derived material responses such as matrix multimerization. Incorporating bioactive elements like cell-adhesive peptides, protease-cleavable sites, and ECM-mimetic mechanical properties such as stiffness and porosity into robust well-characterized hydrogels has been pursued for decades. Through careful selection of linkage chemistries and structured design of material subunits, hydrogels have been created that facilitate a great deal of native cellular functions while retaining the customizable nature of engineered materials. A new thrust has emerged to engineer materials with the innate, dynamic bioresponsive activity of native ECM materials. This review characterizes the cell responsive units of native materials and the literature that has recently incorporated these elements into hydrogel tissue engineering and drug delivery materials to promote cell-controlled dynamic responses, a defining characteristic of native functional tissue.

14.
PLoS One ; 8(10): e77978, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24250747

RESUMEN

The southern rock lobster, Jasus edwardsii, shows clear phenotypic differences between shallow water (red coloured) and deeper water (pale coloured) individuals. Translocations of individuals from deeper water to shallower waters are currently being trialled as a management strategy to facilitate a phenotypic change from lower value pale colouration, common in deeper waters, to the higher value red colouration found in shallow waters. Although panmixia across the J. edwardsii range has been long assumed, it is critical to assess the genetic variability of the species to ensure that the level of population connectivity is appropriately understood and translocations do not have unintended consequences. Eight microsatellite loci were used to investigate genetic differentiation between six sites (three shallow, three deep) across southern Tasmania, Australia, and one from New Zealand. Based on analyses the assumption of panmixia was rejected, revealing small levels of genetic differentiation across southern Tasmania, significant levels of differentiation between Tasmania and New Zealand, and high levels of asymmetric gene flow in an easterly direction from Tasmania into New Zealand. These results suggest that translocation among Tasmanian populations are not likely to be problematic, however, a re-consideration of panmictic stock structure for this species is necessary.


Asunto(s)
Palinuridae/genética , Adaptación Fisiológica , Migración Animal , Animales , Flujo Génico , Estudios de Asociación Genética , Genética de Población , Repeticiones de Microsatélite , Fenotipo , Polimorfismo Genético , Tasmania
15.
PLoS One ; 7(7): e37642, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22815684

RESUMEN

Desert mound springs of the Great Artesian Basin in central Australia maintain an endemic fauna that have historically been considered ubiquitous throughout all of the springs. Recent studies, however, have shown that several endemic invertebrate species are genetically highly structured and contain previously unrecognised species, suggesting that individuals may be geographically 'stranded in desert islands'. Here we further tested the generality of this hypothesis by conducting genetic analyses of the obligate aquatic phreatoicid isopod Phreatomerus latipes. Phylogenetic and phylogeographic relationships amongst P. latipes individuals were examined using a multilocus approach comprising allozymes and mtDNA sequence data. From the Lake Eyre region in South Australia we collected data for 476 individuals from 69 springs for the mtDNA gene COI; in addition, allozyme electrophoresis was conducted on 331 individuals from 19 sites for 25 putative loci. Phylogenetic and population genetic analyses showed three major clades in both allozyme and mtDNA data, with a further nine mtDNA sub-clades, largely supported by the allozymes. Generally, each of these sub-clades was concordant with a traditional geographic grouping known as spring complexes. We observed a coalescent time between ∼2-15 million years ago for haplotypes within each of the nine mtDNA sub-clades, whilst an older total time to coalescence (>15 mya) was observed for the three major clades. Overall we observed that multiple layers of phylogeographic history are exemplified by Phreatomerus, suggesting that major climate events and their impact on the landscape have shaped the observed high levels of diversity and endemism. Our results show that this genus reflects a diverse fauna that existed during the early Miocene and appears to have been regionally restricted. Subsequent aridification events have led to substantial contraction of the original habitat, possibly over repeated Pleistocene ice age cycles, with P. latipes populations becoming restricted in the distribution to desert springs.


Asunto(s)
Crustáceos/clasificación , Crustáceos/genética , Clima Desértico , Agua Dulce , Animales , ADN Mitocondrial/genética , Sitios Genéticos/genética , Variación Genética , Haplotipos/genética , Isoenzimas/metabolismo , Filogeografía , Análisis Espacio-Temporal
16.
Mol Phylogenet Evol ; 63(3): 904-14, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22450357

RESUMEN

The Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae) are economically important for the biological control of lepidopteran stemboring pests associated with gramineous crops. Some members of the complex successfully parasitize numerous stemborer pest species, however certain geographic populations have demonstrated variation in the range of hosts that they parasitize. In addition, the morphology of the complex is highly conserved and considerable confusion surrounds the identity of species and host-associated biotypes. We generated nucleotide sequence data for two mtDNA genes (COI, 16S) and three anonymous nuclear loci (CfBN, CfCN, CfEN) for the C. flavipes complex. To analyze genetic variation and relationships among populations we used (1) concatenated mtDNA and nDNA data, (2) a nDNA multilocus network approach, and (3) two species tree inference methods, i.e. Bayesian estimation of species trees (BEST) and Bayesian inference of species trees from multilocus data with (*)BEAST. All phylogenetic analyses provide strong support for monophyly of the complex and the presence of at least four species, C. chilonis (from China and Japan), C. sesamiae (from Africa), C. flavipes (originating from the Indo-Asia region but introduced into Africa and the New World), and C. nonagriae (from Australia and Papua New Guinea). Haplotype diversity of geographic populations relates to historical biogeographic barriers and biological control introductions, and reflects previous reports of ecological variation in these species. Strong discordance was found between the mitochondrial and nuclear markers in the Papua New Guinea haplotypes, which may be an outcome of hybridization and introgression of C. flavipes and C. nonagriae. The position of Cotesia flavipes from Japan was not well supported in any analysis and was the sister taxon to C. nonagriae (mtDNA, (*)BEAST), C. flavipes (nDNA) or C. flavipes+C. nonagriae (BEST) and, may represent a cryptic species. The concatenated five gene phylogenetic analyses did not support the overall separation and monophyly of clades associated with different host species, although some clades did show specific host associations, possibly due to localized host availability, rather than host specificity. Our results provide a framework for assessing whether distinct lineages represent cryptic species, and for examining parasitoid-host evolution and compatibility more generally. Given the limitations of morphological based identification for members of this complex, molecular identification is recommended prior to any biological control introductions.


Asunto(s)
Agentes de Control Biológico , Variación Genética , Lepidópteros , Filogenia , Avispas/genética , Animales , Teorema de Bayes , Complejo IV de Transporte de Electrones/genética , Genes Mitocondriales , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Proteína Relacionada con la Hormona Paratiroidea , Fragmentos de Péptidos , ARN Ribosómico 16S/genética
17.
Mol Ecol ; 18(1): 109-22, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19140968

RESUMEN

The groundwater-dependent springs of the Great Artesian Basin (GAB) in arid inland Australia represent a unique and threatened ecosystem. These incredibly isolated springs support a diverse array of endemic flora and fauna. One of the common faunal groups in the GAB springs is the freshwater amphipods of the family Chiltoniidae. The morphological conservatism and taxonomic uncertainty associated with these amphipods has ensured their true biodiversity, phylogeographical history and evolutionary affinities have remained unknown. We have used mitochondrial DNA and allozyme data to unravel a complicated history of isolation, extinction and dispersal among spring amphipod populations across the GAB. The results provide evidence for multiple independent colonizations in the GAB springs, particularly within the Lake Eyre group of springs. The inclusion of a group of Western Australian (WA) stygobitic amphipods from populations up to 1500 km away found surprising evidence for a shared evolutionary history between stygobitic and GAB spring amphipods. Approximate dating of the diversity found between major clades suggests the majority of lineages originated in the late Miocene, around the time of the aridification of inland Australia. The large number of independent lineages and the close connection between GAB spring and WA stygobitic amphipods suggest that a significantly rich amphipod fauna existed in the much wetter environment that once existed in inland Australia. The results also provide evidence for a gross underestimation of the species diversity within the springs, with 12 putative species identified, a conclusion with significant implications for the ongoing conservation of the GAB springs.


Asunto(s)
Anfípodos/genética , Biodiversidad , Especiación Genética , Anfípodos/clasificación , Anfípodos/enzimología , Animales , Australia , ADN Mitocondrial/genética , Agua Dulce , Genética de Población , Geografía , Isoenzimas/genética , Filogenia , Análisis de Secuencia de ADN
18.
Mol Phylogenet Evol ; 38(3): 583-602, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16503280

RESUMEN

Current knowledge of the evolutionary relationships amongst the wolf spiders (Araneae: Lycosidae) is based on assessment of morphological similarity or phylogenetic analysis of a small number of taxa. In order to enhance the current understanding of lycosid relationships, phylogenies of 70 lycosid species were reconstructed by parsimony and Bayesian methods using three molecular markers; the mitochondrial genes 12S rRNA, NADH1, and the nuclear gene 28S rRNA. The resultant trees from the mitochondrial markers were used to assess the current taxonomic status of the Lycosidae and to assess the evolutionary history of sheet-web construction in the group. The results suggest that a number of genera are not monophyletic, including Lycosa, Arctosa, Alopecosa, and Artoria. At the subfamilial level, the status of Pardosinae needs to be re-assessed, and the position of a number of genera within their respective subfamilies is in doubt (e.g., Hippasa and Arctosa in Lycosinae and Xerolycosa, Aulonia and Hygrolycosa in Venoniinae). In addition, a major clade of strictly Australasian taxa may require the creation of a new subfamily. The analysis of sheet-web building in Lycosidae revealed that the interpretation of this trait as an ancestral state relies on two factors: (1) an asymmetrical model favoring the loss of sheet-webs and (2) that the suspended silken tube of Pirata is directly descended from sheet-web building. Paralogous copies of the nuclear 28S rRNA gene were sequenced, confounding the interpretation of the phylogenetic analysis and suggesting that a cautionary approach should be taken to the further use of this gene for lycosid phylogenetic analysis.


Asunto(s)
Conducta Animal , Evolución Biológica , NAD/genética , Filogenia , ARN Ribosómico 28S/genética , ARN Ribosómico/genética , Arañas/clasificación , Animales , ADN/genética , Especificidad de la Especie , Arañas/genética , Arañas/fisiología
19.
Mar Biotechnol (NY) ; 7(4): 339-49, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15902543

RESUMEN

The complete mitochondrial DNA sequence was determined for the Australian giant crab Pseudocarcinns gigas (Crustacea: Decapoda: Menippidae) and the giant freshwater shrimp Macrobrachium rosenbergii (Crustacea: Decapoda: Palaemonidae). The Pse gigas and Mrosenbergii mitochondrial genomes are circular molecules, 15,515 and 15,772 bp in length, respectively, and have the same gene composition as found in other metazoans. The gene arrangement of M. rosenbergii corresponds with that of the presumed ancestral arthropod gene order, represented by Limulus polyphemus, except for the position of the tRNALeu(UUR) gene. The Pse. gigas gene arrangement corresponds exactly with that reported for another brachyuran, Portunus trituberculatus, and differs from the M. rosenbergii gene order by only the position of the tRNAHis gene. Given the relative positions of intergenic nonoding nucleotides, the "duplication/random loss" model appears to be the most plausible mechanism for the translocation of this gene. These data represent the first caridean and only the second brachyuran complete mtDNA sequences, and a source of information that will facilitate surveys of intraspecific variation within these commercially important decapod species.


Asunto(s)
ADN Mitocondrial/genética , Decápodos/genética , Animales , Composición de Base , Emparejamiento Base , Secuencia de Bases , Codón/genética , Cartilla de ADN , Orden Génico , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Especificidad de la Especie , Translocación Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...